GJ

G. Joseph

24 records found

This survey paper examines recent advancements in low-resolution signal processing, emphasizing quantized compressed sensing. Rising costs and power demands of high-sampling-rate data acquisition drive the interest in quantized signal processing, particularly in wireless communic ...
This work studies the problem of jointly estimating unknown parameters from Kronecker-structured multidimensional signals, which arises in applications like intelligent reflecting surface (IRS)-aided channel estimation. Exploiting the Kronecker structure, we decompose the estimat ...
We study the sparse recovery problem with an underdetermined linear system characterized by a Kronecker-structured dictionary and a Kronecker-supported sparse vector. We cast this problem into the sparse Bayesian learning (SBL) framework and rely on the expectation-maximization m ...
We address the problem of estimating a binary occupancy grid map by fusing point cloud data from radar and LiDAR sensors for automotive driving perception. To achieve this, we introduce two measurement models for fusion and formulate occupancy mapping as sparse vector reconstruct ...
We tackle the anomaly detection problem within a given set of binary processes through a learning-based controlled sensing approach. This problem is particularly pertinent to applications related to the Internet of Things (IoT) that monitor multiple related processes. Each proces ...
Occupancy grid maps provide information about obstacles and available free space in the environment and are crucial in automotive driving applications. An occupancy map is constructed using point cloud data from sensor modalities such as light detection and ranging (LiDAR) and ra ...
This monograph presents some exciting and new results on the analysis and design of control of discrete-time linear dynamical systems using sparse actuator control. Sparsity constraints arise naturally in the inputs of several linear systems due to limited resources or the underl ...
This paper studies the problem of modifying the input matrix of a structured system to make the system strongly structurally controllable. We focus on the generalized structured systems that rely on zero/nonzero/arbitrary structure, i.e., some entries of system matrices are zeros ...
The convergence of expectation-maximization (EM)-based algorithms typically requires continuity of the likelihood function with respect to all the unknown parameters (optimization variables). The requirement is not met when parameters comprise both discrete and continuous variabl ...
Millimeter-wave radar is a common sensor modality used in automotive driving for target detection and perception. These radars can benefit from side information on the environment being sensed, such as lane topologies or data from other sensors. Existing radars do not leverage th ...
This letter considers the design of sparse actuator schedules for linear time-invariant systems. An actuator schedule selects, for each time instant, which control inputs act on the system in that instant. We address the optimal scheduling of control inputs under a hard constrain ...
We consider the control of discrete-time linear dynamical systems using sparse inputs where we limit the number of active actuators at every time step. We develop an algorithm for determining a sparse actuator schedule that ensures the existence of a sparse control input sequence ...
This paper develops a channel estimation technique for millimeter wave (mmWave) communication systems. Our method exploits the sparse structure in mmWave channels for low training overhead and accounts for the phase errors in the channel measurements due to phase noise at the osc ...
We tackle the problem of estimating a binary occupancy grid map by fusing point cloud data from LiDAR and radar sensors for automotive driving perception. To this end, we introduce two sparsity measurement models for fusion, formulating occupancy mapping as a sparse binary vector ...
We consider the problem of jointly estimating the states and sparse inputs of a linear dynamical system using noisy low-dimensional observations. We exploit the underlying sparsity in the inputs using fictitious sparsity-promoting Gaussian priors with unknown variances (as hyperp ...
In this article, we study the conditions to be satisfied by a discrete-time linear system to ensure output controllability using sparse control inputs. A set of necessary and sufficient conditions can be directly obtained by extending the Kalman rank test for output controllabili ...
The problem of estimating occupancy grids to support automotive driving applications using LiDAR sensor point clouds is considered. We formulate the problem as a sparse binary occupancy value reconstruction problem. Our proposed occupancy grid estimation method is based on patter ...
We address the problem of sequentially selecting and observing processes from a given set to find the anomalies among them. The decision-maker observes a subset of the processes at any given time instant and obtains a noisy binary indicator of whether or not the corresponding pro ...
This paper presents novel cascaded channel estimation techniques for an intelligent reflecting surface-aided multiple-input multiple-output system. Motivated by the channel angular sparsity at higher frequency bands, the channel estimation problem is formulated as a sparse vector ...
Phased arrays in near-field communication allow the transmitter to focus wireless signals in a small region around the receiver. Proper focusing is achieved by carefully tuning the phase shifts and the polarization of the signals transmitted from the phased array. In this paper, ...