Efficient Off-Grid Bayesian Parameter Estimation for Kronecker-Structured Signals

Journal Article (2025)
Author(s)

Yanbin He (TU Delft - Signal Processing Systems)

Geethu Joseph (TU Delft - Signal Processing Systems)

Research Group
Signal Processing Systems
DOI related publication
https://doi.org/10.1109/TSP.2025.3583895
More Info
expand_more
Publication Year
2025
Language
English
Research Group
Signal Processing Systems
Bibliographical Note
Green Open Access added to TU Delft Institutional Repository as part of the Taverne amendment. More information about this copyright law amendment can be found at https://www.openaccess.nl. Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.@en
Volume number
73
Pages (from-to)
2616-2630
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

This work studies the problem of jointly estimating unknown parameters from Kronecker-structured multidimensional signals, which arises in applications like intelligent reflecting surface (IRS)-aided channel estimation. Exploiting the Kronecker structure, we decompose the estimation problem into smaller, independent subproblems across each dimension. Each subproblem is posed as a sparse recovery problem using basis expansion and solved using a novel off-grid sparse Bayesian learning (SBL)-based algorithm. Additionally, we derive probabilistic error bounds for the decomposition, quantify its denoising effect, and provide convergence analysis for off-grid SBL. Our simulations show that applying the algorithm to IRS-aided channel estimation improves accuracy and runtime compared to state-of-the-art methods through the low-complexity and denoising benefits of the decomposition step and the high-resolution estimation capabilities of off-grid SBL.

Files

License info not available
warning

File under embargo until 10-01-2026