Modelling Turbulent Combustion Coupled with Conjugate Heat Transfer in OpenFOAM
Mohamed el El Abbassi (TU Delft - Numerical Analysis)
D.J.P. Lahaye (TU Delft - Mathematical Physics)
Cornelis Vuik (TU Delft - Numerical Analysis)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
This paper verifies a mathematical model that is developed for the open source CFD-toolbox OpenFOAM, which couples turbulent combustion with conjugate heat transfer. This feature already exists in well-known commercial codes. It permits the prediction of the flame’s characteristics, its emissions, and the consequent heat transfer between fluids and solids via radiation, convection, and conduction. The verification is based on a simplified 2D axisymmetric cylindrical reactor. In the first step, the combustion part of the solver is compared against experimental data for an open turbulent flame. This shows good agreement when using the full GRI 3.0 reaction mechanism. Afterwards, the flame is confined by a cylindrical wall and simultaneously conjugate heat transfer is activated and analysed. It is shown that the combustion and conjugate heat transfer are successfully coupled.