The Shape of Learning Curves

A Review

Review (2023)
Author(s)

Tom Julian Viering (TU Delft - Pattern Recognition and Bioinformatics)

Marco Loog (TU Delft - Pattern Recognition and Bioinformatics, University of Copenhagen)

Research Group
Pattern Recognition and Bioinformatics
Copyright
© 2023 T.J. Viering, M. Loog
DOI related publication
https://doi.org/10.1109/TPAMI.2022.3220744
More Info
expand_more
Publication Year
2023
Language
English
Copyright
© 2023 T.J. Viering, M. Loog
Research Group
Pattern Recognition and Bioinformatics
Bibliographical Note
Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.@en
Issue number
6
Volume number
45
Pages (from-to)
7799-7819
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

Learning curves provide insight into the dependence of a learner's generalization performance on the training set size. This important tool can be used for model selection, to predict the effect of more training data, and to reduce the computational complexity of model training and hyperparameter tuning. This review recounts the origins of the term, provides a formal definition of the learning curve, and briefly covers basics such as its estimation. Our main contribution is a comprehensive overview of the literature regarding the shape of learning curves. We discuss empirical and theoretical evidence that supports well-behaved curves that often have the shape of a power law or an exponential. We consider the learning curves of Gaussian processes, the complex shapes they can display, and the factors influencing them. We draw specific attention to examples of learning curves that are ill-behaved, showing worse learning performance with more training data. To wrap up, we point out various open problems that warrant deeper empirical and theoretical investigation. All in all, our review underscores that learning curves are surprisingly diverse and no universal model can be identified.

Files

The_Shape_of_Learning_Curves_A... (pdf)
(pdf | 0.901 Mb)
- Embargo expired in 05-11-2023
License info not available