Waste Valorization in a Sustainable Bio-Based Economy
The Road to Carbon Neutrality
More Info
expand_more
Abstract
The development of sustainable chemistry underlying the quest to minimize and/or valorize waste in the carbon-neutral manufacture of chemicals is followed over the last four to five decades. Both chemo- and biocatalysis have played an indispensable role in this odyssey. in particular developments in protein engineering, metagenomics and bioinformatics over the preceding three decades have played a crucial supporting role in facilitating the widespread application of both whole cell and cell-free biocatalysis. The pressing need, driven by climate change mitigation, for a drastic reduction in greenhouse gas (GHG) emissions, has precipitated an energy transition based on decarbonization of energy and defossilization of organic chemicals production. The latter involves waste biomass and/or waste CO2 as the feedstock and green electricity generated using solar, wind, hydroelectric or nuclear energy. The use of waste polysaccharides as feedstocks will underpin a renaissance in carbohydrate chemistry with pentoses and hexoses as base chemicals and bio-based solvents and polymers as environmentally friendly downstream products. The widespread availability of inexpensive electricity and solar energy has led to increasing attention for electro(bio)catalysis and photo(bio)catalysis which in turn is leading to myriad innovations in these fields.