A Multilayer Control Strategy for the Calais Canal
Pablo Segovia (TU Delft - Transport Engineering and Logistics)
Vicenç Puig (Institut de Ròbotica i Informàtica Industrial, Barcelona, Universitat Politecnica de Catalunya)
Eric Duviella (Université de Lille)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
This article presents the design of a control strategy for the Calais canal, a navigation canal located in a lowland area in northern France that is affected by tides. Moreover, the available actuators are discrete-valued and the hierarchy of operational objectives is time-varying. All these circumstances render water level regulation of the Calais canal a challenging problem. In view of this situation, the design of the overall control architecture is divided into a sequence of structured tasks, which are distributed among layers. The upper layer determines the current operating mode based on the analysis of several environmental and operational aspects. Information regarding the current mode is taken into account at the intermediate layer to select the appropriate optimization-based control problem, which is solved using lexicographic minimization. The optimal control setpoints are determined and sent to the lower layer, where scheduling problems are solved to select low-level control actions from a finite set to minimize the mismatch with respect to the optimal setpoints. Different realistic simulation scenarios are tested to demonstrate the effectiveness of the proposed approach.