A form-finding method for membrane shells with radial basis functions

Journal Article (2022)
Author(s)

Y.-C. Chiang (TU Delft - Structural Design & Mechanics)

A. Borgart (TU Delft - Structural Design & Mechanics)

Research Group
Structural Design & Mechanics
Copyright
© 2022 Y.-C. Chiang, A. Borgart
DOI related publication
https://doi.org/10.1016/j.engstruct.2021.113514
More Info
expand_more
Publication Year
2022
Language
English
Copyright
© 2022 Y.-C. Chiang, A. Borgart
Research Group
Structural Design & Mechanics
Volume number
251
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

The equilibrium of a membrane shell is governed by Pucher's equation that is described in terms of the relations among the external load, the shape of the shell, and the Airy stress function. Most of the existing funicular form-finding algorithms take a discretized stress network as the input and find the shape. When the resulting shape does not meet the user's expectation, there is no direct clue on how to revise the input. The paper utilizes the method of radial basis functions, which is typically used to smoothly approximate arbitrary scalar functions, to represent C smooth shapes and stress functions of shells. Thus, the boundary value problem of solving Pucher's equation can be converted into a least-squares regression problem, without the need of discretizing the governing equation. When the provided shape or stress function admits no solution, the algorithm recommends users how to tweak the input in order to find an approximate solution. The external load in this method can easily incorporate vertical and horizontal components. The latter part might not always be negligible, especially for the seismic hazard zones. This paper identifies that the peripheral walls are preferable to allow the membrane shells to carry horizontal loads in various directions without deviating from their original shapes. When there are no sufficient supports, the algorithm can also suggest the potential stress eccentricities, which could inform the design of reinforcing beams.