Volumetric Pothole Detection from UAV-Based Imagery
Siyuan Chen (University College Dublin, Hunan Institute of Science and Technology)
Debra F. Laefer (New York University, University College Dublin)
Xiangding Zeng (Hunan Institute of Science and Technology)
L. Truong (TU Delft - Optical and Laser Remote Sensing)
Eleni Mangina (University College Dublin)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Road networks are essential elements of a community's infrastructure and need regular inspection. Present practice requires traffic interruptions and safety risks for inspectors. The road detection system based on vehicle-mounted lasers is also quite mature, offering advantages such as high-precision defect detection, high automation, and fast detection speed. However, it does have drawbacks such as high equipment procurement and maintenance costs, limited flexibility, and insufficient coverage range. Therefore, this paper proposes a low-cost unmanned aerial vehicle (UAV)-based alternative using imagery for automatic road pavement inspection focusing on pothole detection and classification. A slicing-based method, entitled the Pavement Pothole Detection Algorithm, is applied to the imagery after it is converted into a three-dimensional point cloud. When compared with manually extracted results, the proposed UAV-structure-from-motion (SfM) method and the associated algorithm achieved 0.01 m level accuracy for pothole depth detection and maximum errors of 0.0053 m3 in volume evaluation for cases studies of both a road and a bridge deck.