Effects of Martensite Content and Anisotropy on Hydrogen Fracture of Dual-Phase Steels
T. Boot (TU Delft - Arts & Crafts, TU Delft - Team Vera Popovich)
E. Leivseth (Student TU Delft)
S. Fernández Iniesta (Student TU Delft)
Pascal Kömmelt (Tata Steel Europe Limited)
A.J. Bottger (TU Delft - Team Amarante Bottger)
V. Popovich (TU Delft - Team Vera Popovich)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
This work studies the hydrogen embrittlement (HE) behaviour of Dual-Phase steels with varying martensite content. Steels with martensite contents of 25 ± 5, 50 ± 4 and 78 ± 7% were realised by intercritically annealing an as-received DP steel. These steels were charged with hydrogen and consequently subjected to an in situ slow strain rate tensile test to characterise the embrittlement. It was found that the steel with 50% martensitic content showed the most ductility in air, but the highest embrittlement of 86 ± 10%. The extent of embrittlement does not increase further from the point that martensite forms a continuous network in the microstructure. The presence of martensite on the surface is linked to the formation of brittle crack initiation sites in these steels. Furthermore it was found that the anisotropic banded structure in the annealed steels promotes brittle crack propagation along the direction of banding, which originates from rolling process. This research shows that anisotropic martensite distributions as well as surface martensite should be avoided when developing rolled steels, to maximise HE resistance.