Dynamic Backdoors with Global Average Pooling
S. Koffas (TU Delft - Cyber Security)
S. Picek (Radboud Universiteit Nijmegen, TU Delft - Cyber Security)
M. Conti (TU Delft - Cyber Security, University of Padua)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Outsourced training and machine learning as a service have resulted in novel attack vectors like backdoor attacks. Such attacks embed a secret functionality in a neural network activated when the trigger is added to its input. In most works in the literature, the trigger is static, both in terms of location and pattern. The effectiveness of various detection mechanisms depends on this property. It was recently shown that countermeasures in image classification, like Neural Cleanse and ABS, could be bypassed with dynamic triggers that are effective regardless of their pattern and location. Still, such backdoors are demanding as they require a large percentage of poisoned training data. In this work, we are the first to show that dynamic backdoor attacks could happen due to a global average pooling layer without increasing the percentage of the poisoned training data. Nevertheless, our experiments in sound classification, text sentiment analysis, and image classification show this to be very difficult in practice.