Deep Reinforcement Learning Versus Evolution Strategies
A Comparative Survey
A.Y. Majid (TU Delft - Electronics)
Serge Saaybi (Student TU Delft)
Vincent François-Lavet (Vrije Universiteit Amsterdam)
Ranga Rao Venkatesha Prasad (TU Delft - Networked Systems)
C.J.M. Verhoeven (TU Delft - Electronics)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Deep reinforcement learning (DRL) and evolution strategies (ESs) have surpassed human-level control in many sequential decision-making problems, yet many open challenges still exist. To get insights into the strengths and weaknesses of DRL versus ESs, an analysis of their respective capabilities and limitations is provided. After presenting their fundamental concepts and algorithms, a comparison is provided on key aspects, such as scalability, exploration, adaptation to dynamic environments, and multiagent learning. Current research challenges are also discussed, including sample efficiency, exploration versus exploitation, dealing with sparse rewards, and learning to plan. Then, the benefits of hybrid algorithms that combine DRL and ESs are highlighted.