Thermistor-based airflow sensing on a flapping wing micro air vehicle

More Info
expand_more

Abstract

Flow sensing exists widely in nature to help animals perform certain tasks. It has also been widely adopted in engineering applications with different types of sensing instrumentation. In particular, in the field of aerospace engineering, airflow sensing is crucial to vehicle state evaluation and flight control. This project surveys the key mechanisms from biological features in nature that enable flow sensing and expands towards the application motivation to identify a suitable airflow sensor that can be equipped to a flapping wing micro air vehicle (FWMAV) for onboard airflow sensing.

The selection of sensors is first narrowed down to three major types of airflow sensors from the state of art that have the most potential to be integrated onboard a flapping wing MAV, considering the sensor performance need, size, weight and power (SWaP) restrictions. Two thermal-based commercially available low-cost airflow sensors RevP and RevC from Modern Device have been selected after the trade-off analysis.

A full workflow of calibrating and evaluating the two airflow sensors' directional sensitivity has been carried out through two wind tunnel campaigns. Their performance under grid-generated turbulence is compared with a constant temperature hot-wire anemometer. This series of tests leads to the conclusion that the RevP airflow sensor has better performance and is therefore chosen to be placed onboard a flapping wing MAV Delfly Nimble.

Both mounted tests and tethered hovering tests with the Delfly Nimble are performed to further examine the airflow sensor RevP's measurement performance under different influence factors such as MAV throttle levels, MAV body pitch angles and freestream speeds. In the end, it is concluded that as a proof of concept, the RevP sensor is capable of performing effective measurements for low flow speeds less than 4 m/s, within the pitching angle range of -30 to 30 degrees. Although this is the first achieved tethered hover flight with onboard airflow sensing for a flapping wing MAV, its limited payload and onboard power supply demands an even smaller and less power consuming design of airflow sensors to enable further applications such as autonomous reactive control under wind disturbances.