Spin wave based full adder

More Info
expand_more

Abstract

Spin Waves (SWs) propagate through magnetic waveguides and interfere with each other without consuming noticeable energy, which opens the road to new ultra-low energy circuit designs. In this paper we build upon SW features and propose a novel energy efficient Full Adder (FA) design consisting of 1 Majority and 2 XOR gates, which outputs Sum and Carry − out are generated by means of threshold and phase detection, respectively. We validate our proposal by means of MuMax3 micromagnetic simulations and we evaluate and compare its performance with state-of-the-art SW, 22 nm CMOS, Magnetic Tunnel Junction (MTJ), Spin Hall Effect (SHE), Domain Wall Motion (DWM), and Spin-CMOS implementations. Our evaluation indicates that the proposed SW FA consumes 22.5% and 43% less energy than the direct SW gate based and 22 nm CMOS counterparts, respectively. Moreover it exhibits a more than 3 orders of magnitude smaller energy consumption when compared with state-of-the-art MTJ, SHE, DWM, and Spin-CMOS based FAs, and outperforms its contenders in terms of area by requiring at least 22% less chip real-estate.

Files

Spin_Wave_Based_Full_Adder.pdf
(pdf | 2.03 Mb)

Download not available