How does the presence of a body affect the performance of an actuator disk?
More Info
expand_more
Abstract
The article seeks to unify the treatment of conservative force interactions between axi-symmetric bodies and actuators in inviscid ow. Applications include the study of hub interference, di_user augmented wind turbines and boundary layer ingestion propeller con_gurations. The conservation equations are integrated over in_nitesimal streamtubes to obtain an exact momentum model contemplating the interaction between an actuator and a nearby body. No assumptions on the shape or topology of the body are made besides (axi)symmetry. Laws are derived for the thrust coe_cient, power coe_cient and propulsive e_ciency. The proposed methodology is articulated with previous e_orts and validated against the numerical predictions of a planar vorticity equation solver. Very good agreement is obtained between the analytical and numerical methods