

Delft University of Technology

Improved maximum parsimony models for phylogenetic networks

van Iersel, Leo; Jones, Mark; Scornavacca, Celine

DOI
10.1093/sysbio/syx094
Publication date
2018
Document Version
Final published version
Published in
Systematic Biology

Citation (APA)
van Iersel, L., Jones, M., & Scornavacca, C. (2018). Improved maximum parsimony models for phylogenetic
networks. Systematic Biology, 67(3), 518-542. Article syx094. https://doi.org/10.1093/sysbio/syx094

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1093/sysbio/syx094
https://doi.org/10.1093/sysbio/syx094

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

[17:32 12/4/2018 Sysbio-OP-SYSB170096.tex] Page: 518 518–543

Syst. Biol. 67(3):518–542, 2018
© The Author(s) 2017. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved.
For Permissions, please email: journals.permissions@oup.com
DOI:10.1093/sysbio/syx094
Advance Access publication December 20, 2017

Improved Maximum Parsimony Models for Phylogenetic Networks

LEO VAN IERSEL1, MARK JONES1, AND CELINE SCORNAVACCA2,3,∗
1 Delft Institute of Applied Mathematics, Delft University of Technology, P.O. Box 5, 2600 AA Delft, the Netherlands;

2Institut des Sciences de l’Évolution Université de Montpellier, CNRS, IRD, EPHE CC 064,
Place Eugène Bataillon 34095 Montpellier Cedex 05, France;

3Institut de Biologie Computationnelle (IBC), Montpellier, France
∗Correspondence to be sent to: Institut des Sciences de l’Évolution Université de Montpellier, CNRS, IRD, EPHE CC 064,

Place Eugène Bataillon 34095 Montpellier Cedex 05, France;
Email: celine.scornavacca@umontpellier.fr.

Received 3 May 2017; reviews returned 6 December 2017; accepted 11 December 2017
Associate Editor: David Bryant

Abstract.—Phylogenetic networks are well suited to represent evolutionary histories comprising reticulate evolution. Several
methods aiming at reconstructing explicit phylogenetic networks have been developed in the last two decades. In this
article, we propose a new definition of maximum parsimony for phylogenetic networks that permits to model biological
scenarios that cannot be modeled by the definitions currently present in the literature (namely, the “hardwired” and
“softwired” parsimony). Building on this new definition, we provide several algorithmic results that lay the foundations
for new parsimony-based methods for phylogenetic network reconstruction. [Maximum parsimony; parental parsimony;
phylogenetic networks.]

Phylogenetic networks are used to represent
evolutionary relationships when the history of a
set of taxa of interest accommodate events causing
inheritance from multiple ancestors (Doolittle 1999),
a phenomenon called reticulate evolution. Examples
of such reticulate events include hybrid speciation
or hybridization (Mallet 2007; Abbott et al. 2013),
horizontal gene transfer (Boto 2010; Zhaxybayeva and
Doolittle 2011), and recombination (Posada et al. 2002;
Vuilleumier and Bonhoeffer 2015). In its broadest sense,
a phylogenetic network can simply be thought of as a
graph (directed or undirected) with its leaves labeled by
taxa. For an introduction to phylogenetic networks, see
Huson et al. (2010) and Morrison (2011).

Separate lines of research have developed
combinatorial methods to reconstruct explicit
phylogenetic networks. (Phylogenetic networks can
be used in two different ways: either to represent
conflicting signals in the data—in which case we speak
of abstract or data-display phylogenetic networks—or
to represent putative evolutionary histories involving
reticulate events—in which case the network is called
explicit.) They all share the same underlying approach:
first, combinatorial objects such as phylogenetic trees,
clusters or trinets (networks on three leaves) are
constructed from the data of the species under study;
second, these combinatorial objects are combined into
an explicit phylogenetic network. The way they are
combined and the parameter to optimize give a large
range of different problems. A review of this kind of
approach can be found in Huson et al. (2010).

In addition to these combinatorial approaches, in the
last 10 years a number of likelihood-based methods
have appeared. They can be roughly categorized into
two classes: those that have sequence alignments as

input (e.g., Jin et al. 2006; Nguyen and Roos 2015)—
analogous to classic maximum-likelihood methods for
tree reconstruction—and those that instead use the
predictions of population-genetics models—namely the
multispecies coalescent (Degnan and Rosenberg 2009)—
to seek a phylogenetic network that matches the
observed frequencies of (inferred) input trees (e.g.,
Liu et al. 2010; Solís-Lemus and Ané 2016). The latter
approach is relevant to small evolutionary scales where
the observed input trees may not match any of the
trees “displayed” by the network. These methods are
potentially more accurate than the combinatorial ones,
but they require more complex computations, and thus
they are generally much slower.

Finally, some work has been done toward the
generalization of parsimony-based methods (e.g., Fitch
1971), to phylogenetic network reconstruction (Jin et al.
2007; Kannan and Wheeler 2012; Fischer et al. 2015).
(For completeness, we should also mention the related
approaches of reconstructing Ancestral Recombination
Graphs (ARGs) (Gusfield 2014) and Admixture graphs,
(Pickrell and Pritchard 2012).) These kinds of methods, as
in the case of tree reconstruction, are not model based,
and thus they are less powerful than likelihood based
ones; for example, they are not statistically consistent
(Felsenstein 1978), that is, the probability to obtain
the correct tree does not converge to one as more
and more data are analyzed. Still, these methods have
an important part to play in network reconstruction.
For instance, they can be used in combination with
likelihood-based methods to compute the network with
which to start the maximum-likelihood search, or to
design fast local-search techniques. More importantly,
they will be extremely useful in cases when likelihood-
based approaches cannot scale up to the input data.

518

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article/67/3/518/4767820 by Bibliotheek TU

 D
elft user on 03 D

ecem
ber 2021

[17:32 12/4/2018 Sysbio-OP-SYSB170096.tex] Page: 519 518–543

2018 VAN IERSEL ET AL.—PARSIMONY ON NETWORKS 519

In this article, we focus on the parsimony framework,
providing several algorithmic results that lay the
foundations of new parsimony-based methods for
phylogenetic network reconstruction.

The main hypothesis of parsimony-based methods is
that character changes are not frequent, and thus the
phylogenies that best explain the data are those requiring
the fewest evolutionary changes. In a parsimony
approach, each character can be analyzed independently
from the others. Correspondingly, given a phylogenetic
tree T, once the parsimony score PS(cj|T) is calculated for
each character cj, the parsimony score of the alignment
A of length m is given by the (weighted) sum of the
parsimony score of each character, that is PS(A|T)=∑m

j=1(wj ·PS(cj|T)) where wj is a user-defined weight
for the character cj, which can be used, for example,
to model the confidence in the character. Assuming
that the sequences of the internal nodes of the tree
are known, one can easily determine the number of
substitutions necessary to explain different states for cj
at the two extremities of a branch e. Denoting this value
by PS(cj|e), PS(cj|T) is simply the sum of PS(cj|e) over
all branches e of T, weighted by the substitution cost
(i.e., the cost of changing state for cj). (In the following,
we will consider substitution costs to be all equal to 1
to facilitate notations, but all the results presented in
this article hold for any substitution cost scheme where
substitution costs are positive.) Since only terminal
sequences are known, we need to find the combination
of internal sequences that minimizes PS(cj|T). An O(nm)-
time algorithm to calculate PS(A|T) was proposed by
Fitch (1971). However, finding the maximum parsimony
(MP) tree, that is the tree T that gives the minimum value
of PS(A|T), is a difficult (i.e., NP-hard) problem (Day et al.
1986).

When moving from phylogenetic trees to phylogenetic
networks, we find two different definitions of maximum
parsimony in the literature.

The first definition (the “hardwired” parsimony) is just
the natural extension of the Fitch parsimony (recalled
above) to networks: One aims at finding the assignment
of states to internal nodes of the network such that the
total number of branches that connect nodes in different
states is minimized (Kannan and Wheeler 2012). Note

FIGURE 1. a) The hardwired parsimony score of the depicted network
is 2, while the softwired parsimony score is 1 (one of the possible trees
displayed by the network is depicted in gray in b). Changes are depicted
by thick lines crossing the branches.

that this definition counts a state-change if a reticulation
node has the same state as one of its ancestral nodes
and the other ancestral node has a different state, see
for example the reticulation h in Figure 1a. Hence,
hardwired parsimony counts more state-changes than
necessary in a parsimony framework since h could very
well have inherited its state from the ancestral node
having the same state.

Put differently, although the evolution of the genome
of h is best described by a network, the evolution of
each “atomic” part still follows a tree. This is why in
the second definition (the “softwired” parsimony) the
parsimony score of a character on a network is defined
as the score of the best tree displayed by the network (Jin
et al. 2006; Nguyen and Roos 2015), see Figure 1b for an
example and the paragraph Displayed Trees on page 521
for a formal definition.

The softwired parsimony is, in our opinion, more
biologically relevant than the hardwired one, but it
has a glitch: The definition of tree displayed by the
network given in the literature forces the tree to take
sides between the two parental species: the gene tree
inside the network can only “utilize” one of the branches
entering each hybrid node (e.g., either e1 or e2 in Fig. 1b).
However, this is not always the case, for example in the
presence of allopolyploidy (see Fig. 2a), or of incomplete
lineage sorting (ILS) at the time of hybrid speciations
(see Fig. 2b).

In this article, we introduce a new variant of
parsimony for phylogenetic networks, which improves
on the previous definitions by permitting to model
these processes while staying computationally feasible
for reasonably tree-like networks. We define the parental
parsimony score of a character on a network as the score
of the best “parental” tree of the network. Intuitively
speaking, a tree is a parental tree of a network if it can
be drawn inside the network in such a way that the
internal nodes of the tree correspond to branching nodes
of the network. Importantly, different branches of the
tree are allowed to travel through the same network
branch, which is not allowed for displayed trees. The
different tree-branches inside a network branch can,
for example, model different copies of a gene present
in the genome, or different variants of a gene present

FIGURE 2. a) Because of allopolyploid hybridization, the species h
contains two copies of a gene, one inherited from the ancestral species
p1 and the other from the ancestral species p2. b) Because of ILS, the
gene in a and the one in c coalesce in the ancestral species p1, while the
gene in b and the one in d coalesce in the ancestral species p2. In both
cases, the true gene tree is not displayed by the network.

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article/67/3/518/4767820 by Bibliotheek TU

 D
elft user on 03 D

ecem
ber 2021

[17:32 12/4/2018 Sysbio-OP-SYSB170096.tex] Page: 520 518–543

520 SYSTEMATIC BIOLOGY VOL. 67

in a population. Consequently, parental trees are able
to model situations as the ones depicted in Figure 2,
which cannot be modeled using displayed trees (see
the paragraph Parental Trees on page 521 for a formal
definition).

While a network with one reticulation has only two
displayed trees, it can have exponentially many parental
trees, and computing the parental parsimony score is
a completely different challenge than computing the
softwired score. Fortunately, we shall show that, to
compute the parental parsimony score it is not necessary
to find all parental trees: parental parsimony can instead
be elegantly characterized using “lineage functions.”
The main idea here is to not assign single states to
the internal network-vertices—as is done for hardwired
and softwired parsimony—but to assign sets, or even
multisets (which may contain duplicates) of states. Given
such an assignment, the parental parsimony score can be
computed (see for an example Fig. 3).

In “NP-hardness” section, we show that computing
the parental parsimony score of a given network is
computationally hard (NP-hard). Moreover, this is the
case already when the network is binary and extremely
tree-like in the sense that no reticulation node is a
descendant from another reticulation node, and each
internal node has at least one nonreticulate descendant
branch. Hence, computing the parental parsimony score
is indeed extremely challenging.

Nevertheless, we have developed a dynamic
programming algorithm for computing the parental
parsimony score, which runs efficiently if the number of
reticulations of the network is small. This algorithm is
described in “Fixed-Parameter Tractability With Respect
to Reticulation Number” section.

Moreover, in the case that the total number of
reticulations is large but the level of the network
is small, the parental parsimony score can still be

FIGURE 3. Example of a lineage function, which is represented by the
labeling of the nodes of the network on the right. On the left, you see
the same network with a parental tree drawn inside it and a character
state for each node of the tree. Intuitively, the label of each network
node, described by the lineage function, contains all states that are
present on lineages of the parental tree that pass through this network
node. From this lineage function, the smallest parsimony score of a
parental tree can be computed. For example, consider the reticulate
node h highlighted by a dot. It has label {0,1,2} and parents with labels
{0,1} and {2}, so no state-changes are needed: states 0 and 1 can be
inherited via lineages coming from the first parent, while state 2 can
be inherited via a lineage coming from the other parent, as is the case
in the parental tree drawn inside the network on the left.

computed efficiently, where the “level” of a network,
intuitively the number of reticulate events per reticulated
component, is a measure for how tree-like a network
is. In “Parameterizing by level” section, we describe
how we have extended our dynamic programming
algorithm to handle such situations. The developed
algorithm computes the parental parsimony score of any
network and character exactly. Its running time is only
exponential in the level of the network and in the number
of possible states, while the running time depends only
linearly on the size of the network. Hence the algorithm
scales very well to large data sets, as long as the network
is reasonably tree-like.

One appealing property of our new model is that it is
extremely flexible and is also especially convenient for
developing mathematical proofs and algorithms.

In “Extensions” section, we show that it can be used in
a much more general framework, for example allowing
extant species to have multiple homologous genes and
to take gene duplication and gene loss into account. In
addition, it can even be applied to the other variants of
network parsimony, that is the hardwired and softwired
ones. When ILS is present in the data (and when it is
not only due to hybrid speciations), all trees can have a
nonzero probability to explain the data and one should
search the best tree among all possible trees on X (see
e.g., RoyChoudhury et al. 2008; Bryant et al. 2012, where
the authors adopt a similar approach to score species
trees using biallelic genetic markers). Interestingly, our
framework can also be used to model general ILS (see
“Modeling ILS” section).

METHODS

In order to prove the results presented in the previous
section, we need to introduce a theoretical framework
for parsimony-based inference of explicit phylogenetic
networks.

Preliminaries
Phylogenetic networks.—In graph theory, a directed
acyclic graph (DAG) N is a graph where edges are
directed and in which directed cycles are not permitted.
We will write N = (V,E) to denote the fact that N is a
DAG with node set V and edge set E. We also write V(N)
to denote the nodes of N and E(N) to denote its edges.
The out-degree (in-degree) of a node is the number of
edges starting (ending) in the node. The nodes of out-
degree 0 are called the leaves of N and are also denoted
by L(N). The nodes of in-degree 0 are called the roots
of N. We say N is rooted if N has only one root, and
in such cases the root is denoted �N . A DAG is binary
if the total degree of each node is at most 3, with no
node having in-degree 3 or out-degree 3. See Figure 4
for an example of several concepts introduced in this
paragraph. Let X be a finite set of taxa. A (phylogenetic)
network on X is a connected DAG in which the nodes of
out-degree 0 are bijectively labeled by the elements of X
(bijectively means that each taxon in X labels exactly one

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article/67/3/518/4767820 by Bibliotheek TU

 D
elft user on 03 D

ecem
ber 2021

[17:32 12/4/2018 Sysbio-OP-SYSB170096.tex] Page: 521 518–543

2018 VAN IERSEL ET AL.—PARSIMONY ON NETWORKS 521

FIGURE 4. A directed acyclic graph N. We have that E(N)=
{e2,e3,e3′ ,e4,e5,e6,e7,e8,e9} and V(N)={v1,v2,v3,v4,v5,v6,v7,v8,v9}.
Also, since v1 has in-degree 0, it is the root of N, while {v5,v7,v8,v9} all
have out-degree 0 and they thus compose the set L(N). Note that N is
rooted and binary.

node in L(N)). Throughout this article, we will assume
we are working with rooted binary networks that there
are no nodes of in-degree and out-degree 1. We do not
make this stipulation here, because it will occasionally
be useful to consider subgraphs of a network, which can
end up having such nodes, and we would still like to
categorize these subgraphs as networks. This does not
alter the considered problems.) An example of a rooted
binary network on a set X ={a,b,c,d} is given in Figure 5a.
Note that in this drawing, and in all other drawings
of this article except for Figure 4, edges are not drawn
as directed to simplify the figures; still, they are to be
considered as directed away from the root, which is the
uppermost node in each drawing.

Given a binary rooted phylogenetic network N =
(V,E), the reticulation nodes of N are the nodes u∈V with
in-degree 2. We say that N is a tree if N contains no
reticulation nodes. Given two nodes u,v∈V(N), we say
that u is a parent of v and v is a child of u if E(N) contains
a directed edge from u to v. For any v∈V, we let par(v)
denote the set of parents of v in N. We say that u is an
ancestor of v and v is a descendant of u, if there is a path
from u to v in N. We say u is a trivial ancestor of v (and v
is a trivial descendant of u) if u=v. A network N is tree-
child, if every nonleaf node has at least one child that is
not a reticulation node. The reticulation depth of N is the
maximum number of reticulation nodes on any directed
path in N.

Displayed trees.— A displayed tree of a network is a
possible evolution of a character down a network, if
the character’s genealogy is only allowed to branch
when the network branches, and no two lineages of
the character’s genealogy are allowed to evolve down
the same network branch; see Figure 5(b-bottom) for
an example. More formally, a tree T is displayed by a
network N if T can be obtained from a subgraph of N by
suppressing nodes of in-degree and out-degree 1. Given
a rooted phylogenetic network N on X, let T (N) denote
the set of all phylogenetic trees on X that are displayed
by N.

Parental trees.—Informally, a phylogenetic tree T on
X is a parental tree of N if the nodes of T can be
mapped to nodes of N, and the edges in T mapped
to directed paths of positive length in N joining the
corresponding nodes, in such a way that the leaf of T
labeled with x is mapped to the leaf of N labeled x, for
each x∈X. Note that while every tree displayed by N
is parental, not every parental tree is displayed by N,
as the paths in N corresponding to different edges in T
may overlap, see Figures 5b and 6a. In other words, a
parental tree is one that describes a possible evolution of
a character down a network, if the character’s genealogy
is still only allowed to branch whenever the network
branches, but different lineages of the character’s
genealogy are allowed to evolve down the same network
branch.

In order to define parental trees more formally, we
first define the tree U∗(N) derived from N. Here U∗(N)
is a multilabeled tree or MUL tree (Huber and Moulton
2006), that is one in which a taxon in X can label more
than one leaf. Our definitions in this subsection are based
on those in Huber et al. (2016), where parental trees are
called weakly displayed trees.

Let U∗(N) be the tree whose nodes are the directed
paths in N starting at �N . For each pair of paths �,�′ in
N, there is an edge in U∗(N) from � to �′ if and only
if �′ =�e for some edge e in N. In addition, each node
in U∗(N) corresponding to a path in N that starts at �N
and ends at x∈X is labeled by x. See Figure 5c for an
example.

FIGURE 5. a) A network N on X ={a,b,c,d} and b) two trees on X. The upper tree is a parental tree of N but it is not displayed by N, while
the lower tree is displayed by N and (thus) also a parental tree of N. c) The tree U∗(N) used in the formal definition of parental trees.

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article/67/3/518/4767820 by Bibliotheek TU

 D
elft user on 03 D

ecem
ber 2021

[17:32 12/4/2018 Sysbio-OP-SYSB170096.tex] Page: 522 518–543

522 SYSTEMATIC BIOLOGY VOL. 67

FIGURE 6. On the left, a network N on X ={a,b,c,d} with a parental
tree (in white) drawn inside it. In this example, we have two individuals
for the species b and one individual for all other species. On the right,
the MUL tree U∗(N) with the same parental tree drawn in it.

We say that a phylogenetic tree T on X is a parental tree
of N if it is displayed by U∗(N). Let PT (N) denote the set
of all phylogenetic trees on X that are parental trees of N.
We can easily verify that a tree T is displayed by U∗(N)
by labeling each node in T with the corresponding path
in N. Still, since the size of U∗(N) can be exponential
in the size of N, in the following we do not attempt to
construct U∗(N) explicitly.

The definition of parental trees can be easily extended
to cases with multiple individuals per species, as done
for example in Zhu et al. (2016): it suffices to allow
parental trees to be multilabeled trees. An example is
shown in Figure 6. See “Extensions” section for a more
formal discussion. Note that Zhu and Degnan (2016)
gave a slightly different definition of parental trees—
taking into account branch lengths and inheritance
probabilities—which is well suited for probabilistic
models.

Parsimony Scores
Throughout this article, we will make the common

hypothesis of site independence. Under this hypothesis,
the parsimony score of an alignment is the (weighted)
sum of the parsimony scores of the characters composing
the alignment. In the following, we will thus consider a
single character at a time.

Given a set U and p∈N, a p-state character � on U is
a function from U to {1,...,p}. If p=2, we say that � is
binary.

Parsimony on trees.—Let � be a p-state character on X
and T a rooted phylogenetic tree on X. Then a p-state
character � on V(T) is an extension of � if �(x)=�(x) for
all x∈X. Given a p-state character � on V(T) and an edge
uv∈E(T), the change c�(uv) on uv w.r.t. � is defined to be
0 if �(u)=�(v), and 1 otherwise. Given a tree T on X and
a p-state character � on X, the parsimony score of T and �
can be defined (Fitch 1971) as

PS(T,�)=min
�

∑
uv∈E(T)

c�(uv),

where the minimum is taken over all extensions � of �
to V(T) (we call an extension attaining the minimum, an
optimal one).

Hardwired and softwired parsimony.—Given a network N
on X and a p-state character � on X, the hardwired
parsimony score of N and � can be defined (Kannan and
Wheeler 2012) exactly as the parsimony score of a tree:

PShw(N,�)=min
�

∑
uv∈E(N)

c�(uv),

where the minimum is taken over all extensions � of �
to V(N). We note here for the record that if N is derived
from a network N′ by suppressing nodes of in-degree
and out-degree 1, then PShw(N,�)=PShw(N′,�).

The softwired parsimony score (Jin et al. 2007) of N and
� is the minimum parsimony score of any tree on X
displayed by N, that is

PSsw(N,�)= min
T∈T (N)

min
�

∑
uv∈E(T)

c�(uv).

Parental parsimony.—The parental parsimony score of
a network and character is the minimum number of
state-changes necessary in any evolution of the character
down the network, if the character’s genealogy is
only allowed to branch when the network branches,
while multiple lineages of the character’s genealogy are
allowed to evolve down the same network branch. This is
the case, for example, in the presence of allopolyploidy
or of ILS at the time of hybrid speciations. More formally,
the parental parsimony score of N and � is the minimum
parsimony score of any parental tree of N, that is

PSpt(N,�)= min
T∈PT (N)

min
�

∑
uv∈E(T)

c�(uv).

An example of the different parsimony scores can
be found in Figure 7. Note that parental parsimony is
a better model than hardwired parsimony because the
latter model counts more state-changes than necessary at
the reticulate events. Note also that parental parsimony
can model allopolyploidy and ILS at the time of hybrid
speciations better than softwired parsimony.

We are now ready to formally introduce the problem
tackled in this article:

PARENTAL PARSIMONY PROBLEM (PPP)
Input: A network N on X; a p-state character � on X.
Output: PSpt(N,�).

In the main part of this article, we will focus on solving
PPP. However, the techniques used in this article can
also be used to solve a number of other parsimony-
related problems. Furthermore, our results generalize
to the case where each leaf may be assigned a set or
even a multiset of states. This is of interest, for example,
when we have several individuals per each species and
the individuals do not all agree on the value to associate
to the character under study. We discuss the extension of

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article/67/3/518/4767820 by Bibliotheek TU

 D
elft user on 03 D

ecem
ber 2021

[17:32 12/4/2018 Sysbio-OP-SYSB170096.tex] Page: 523 518–543

2018 VAN IERSEL ET AL.—PARSIMONY ON NETWORKS 523

FIGURE 7. The different parsimony scores of the network N given in Figure 5 are 2, 2, and 1 for the hardwired, softwired, and parental
parsimony, respectively: a) An optimal extension for the hardwired PS; b) Optimal extensions for the two trees displayed by N for the softwired
PS; c) Optimal extensions for the two other parental trees of N (the ones that are not depicted in b)) for the parental PS. Changes are depicted
by a thick line.

our results in more detail in “Extensions” and “Modeling
ILS” sections.

Characterizing Parental Parsimony with Lineage Functions
In this section, we introduce the notion of a lineage

function (We note that lineage functions have a similar
flavor as “ancestral configurations,” which are used for
reconciling gene trees to species networks (Yu et al.
2013b)), in which every node in a network is mapped
to a set of states. Informally, this is a way of tracking how
many branches of a parental tree travel through each
node of the network, and what states are assigned to
each of those branches. A lineage function does not fully
characterize a parental tree, but it does characterize the
parsimony score of the tree, and it is easy to find a tree
with minimal parsimony score corresponding to a given
lineage function. Moreover, lineage functions provide
a useful tool for dynamic programming algorithms to
solve PPP.

Given a set U, we denote by P(U) the set of all subsets
of U. Then, we define a lineage function as follows.

Definition 1. Given a rooted phylogenetic network N on
X and an integer p, a (p-width) lineage function on N is a
function f :V(N)→P({1,...,p}).

We say that f is rooted if |f (�N)|=1.
Given a p-state character� on X, we say that f is�-consistent

if f (x)={�(x)} for all x∈X.

Consider as an example the parental tree depicted
Figure 3b. In this example, the network node h has three
branches of the parental tree passing through it. These
branches have states 0, 1, and 2 respectively. Thus, the
corresponding lineage function (in Fig. 3a) assigns this
node the value {0,1,2}.

Given a lineage function f , we wish to define the
weight of f , that gives the minimum parsimony score of
a parental tree corresponding to f . The key observation
behind our methods is that this score can be determined
by comparing, for each v∈V(N), the set f (v) with the sets

f (u) of each parent u of v. To that end, we first define the
weight of a node v with respect to f :

Definition 2. Let f be a lineage function on N.
Given a node v of N, the weight of v with respect to f , denoted

wf (v), is defined as

wf (v)=
⎧⎨
⎩

0 if v=�N∞ if v �=�N and |f (v)|>∑
u∈par(v) |f (u)|

|f (v)\(
⋃

u∈par(v) f (u))| otherwise

The total weight of f is defined as

w(f)=
∑

v∈V(N)

wf (v)

Consider again the lineage function depicted in
Figure 3. The network node with assigned set {0,1} has
parents with assigned sets {0} and {1}, respectively, and
therefore the cost on this node is 0. This reflects the fact
that each branch of the parental tree passing through
this node comes from a branch of one of the parents
having a matching state. On the other hand, the node
with assigned set {2}—and whose only parent is assigned
{1}—has a cost of 1, as the only branch passing through
this node had to change state from 1 to 2.

A weight of value ∞ denotes that there is no parental
tree corresponding to the given lineage function. This
only happens when there are not enough branches
traveling through the parent node(s) to cover the number
of branches required in a child node. For example, if u is
the only parent of v in a network, there can be no parental
tree with one branch going through u and two branches
passing through v.

We remind that, although we will focus on solving
PPP, lineage functions can be used to calculate optimum
scores for a number of measures, including softwired
and hardwired parsimony scores, gene loss and
duplication minimization, and arbitrary combinations
of these scores. We discuss this further in “Extensions”
section.

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article/67/3/518/4767820 by Bibliotheek TU

 D
elft user on 03 D

ecem
ber 2021

[17:32 12/4/2018 Sysbio-OP-SYSB170096.tex] Page: 524 518–543

524 SYSTEMATIC BIOLOGY VOL. 67

We summarize the relation between lineage functions
and parental parsimony in the following theorem:

Theorem 1. For any binary network N on X and p-
state character � on X, PSpt(N,�)=min{w(f) : f is a rooted
�-consistent lineage function on N}.

The proof of this result and all other missing proofs
can be found in the Appendix.

Thanks to this result, in the remainder of this article
we may view PPP as the problem of finding a minimum
weight rooted �-consistent lineage function.

We now prove another property of lineage functions,
namely that we may assume that any lineage function
assigns each node to a nonempty subset of {1,...,p}.
Lemma 1. Let N be a phylogenetic network on X and � a
p-state character on X. Then, for any rooted lineage function f
on N, there exists a rooted lineage function f ′ on N such that
w(f ′)≤w(f), and f (v) �=∅ for all v∈V(N).

Proof . Suppose w.l.o.g. that w(f)<∞. Now consider a
highest v∈V such that f (v)=∅. As f is rooted, v has a
parent u in N and f (u) �=∅. Then let f ′ be the lineage
function that is identical to f , except that f ′(v)={i} for
some arbitrary i∈ f (u).

Observe that wf ′ (v′)≤wf (v′) for any child v′ of v. For
v itself, as f ′(v)⊆ f ′(u) we have that wf ′ (v)=0≤wf (v).
For each other u′ ∈V(N), we have wf ′ (u′)=wf (u′). Thus
w(f ′)≤w(f). By repeating this process exhaustively, we
end up with a lineage function f ′ such that w(f ′)≤w(f)
and f (v) �=∅ for all v∈V(N), as required.

We also prove a bound on the size of f (v) in terms of
the reticulation ancestors of v, for any lineage function f
on N and v∈V(N).

Lemma 2. Let v∈V(N) be an arbitrary node of N and k′
the number of reticulation nodes that are ancestors of v in N
(including v itself). Then |f (v)|≤2k′

for any rooted lineage
function on N with w(f)<∞.

In particular, |f (v)|≤2k for all v∈V(N), where k is the
number of reticulation nodes in N.

Proof . We prove the claim by induction on the depth of v
(i.e., the length of a longest path from �N to v). If v=�N ,
then k′ =0, and as f is rooted, |f (v)|=1=2k′

.
So now assume that v �=�N . If v is not a reticulation

node, then v has a single parent u. As w(f)<∞, |f (v)|≤
|f (u)|. By the inductive hypothesis (and the fact that every
reticulation ancestor of u is an ancestor of v), |f (u)|≤2k′

.
Thus, |f (v)|≤2k′

.
If v is a reticulation node, then v has two parents u and

u′, each of which has fewer reticulation ancestors than
u. Thus, as w(f)<∞ and by the inductive hypothesis,
|f (v)|≤|f (u)|+|f (u′)|≤2·2k′−1 =2k′

.

To summarize, in this section we have shown that
to compute the parental parsimony score of a network
and character, we do not need to determine how exactly

the character evolved down the network. It suffices to
determine the number of lineages of the character’s
genealogy corresponding to each network node, and the
state of each such lineage. Moreover, we have shown that,
if a network node has a limited number of reticulate
ancestors, there can only be a limited number of
lineages of the character genealogy that evolve down this
network node. In addition, there always exists an optimal
assignment where each network node corresponds to at
least one lineage of the character genealogy.

NP-hardness
In this section, we show that PPP is NP-hard, even

when the input character is binary and the input network
is tree-child and has reticulation depth at most 1.

Lemma 1 implies that when p=2, we may assume
a lineage function assigns each node to one of three
possible sets: {1}, {2}, or {1,2}.

Our hardness reduction is based on the following
observation: suppose that u is a reticulation node with
parents a and b, that u has a single child v, and that v has
leaf children x and y, with �(x)={1},�(y)={2}. Suppose
furthermore that a and b are nonreticulation nodes with
no reticulation ancestors and therefore |f (a)|=|f (b)|=1
for any rooted lineage function f with w(f)<∞ (by
Lemma 2). If f (a) �= f (b), then we may set f (u)= f (v)={1,2}
and ensure that wf (u)=wf (v)=wf (x)=wf (y)=0. On the
other hand if f (a)= f (b)={1}, then for some v′ ∈{u,v,y}
we must have that wf (u)≥1, and similarly when f (a)=
f (b)={2}.

Thus, the subgraph on a,b,u,v,x,y can be viewed as
a gadget that imposes a cost of 1 for setting f (a)= f (b).
Such gadgets (one is depicted in Fig. 8) can be used to
create a reduction to PPP from the NP-hard problem MAX-
CUT (Alimonti and Kann 1997).

Theorem 2. PPP is NP-hard, even when the character � is
binary, and the network N is tree-child and has reticulation
depth at most 1.

To summarize this section, we have shown
that computing the parental parsimony score is
computationally a hard problem even for extremely
tree-like networks. In more detail, this is even the
case when no reticulate node is an ancestor of another

FIGURE 8. The gadget used in the NP-hardness proof.

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article/67/3/518/4767820 by Bibliotheek TU

 D
elft user on 03 D

ecem
ber 2021

[17:32 12/4/2018 Sysbio-OP-SYSB170096.tex] Page: 525 518–543

2018 VAN IERSEL ET AL.—PARSIMONY ON NETWORKS 525

reticulate node, and no network node has two reticulate
descendant branches.

Fixed-Parameter Tractability With Respect to Reticulation
Number

In this section, we give an algorithm to solve the PPP
that is exponential only w.r.t. the reticulation number of
the network k and the number of possible states p, and
polynomial w.r.t. the number of leaves of the network.
(We thus have a fixed-parameter algorithm with respect to
k and p. We refer to Downey and Fellows (2012), Flum
and Grohe (2006), Gramm et al. (2008), and Niedermeier
(2006) for an introduction to fixed parameter tractability.)

In the light of Theorem 1, we will view PPP as
the problem of finding a minimum cost (rooted, �-
consistent) lineage function on N. In the remainder of
this article, we let Y denote the set P({1,...,p})\{∅}, that
is Y is the set of all possible sets that may be assigned to
a node by a lineage function. (Note that, when we come
to generalize our results in the next sections, Y may be
replaced with another set.) We let � denote |Y|. Thus
when p=2, we have Y ={{1},{2},{1,2}} and �=3.

Let P be a set of nodes in N constructed by taking
one parent of each reticulation node in N. Then let F be
the network derived from N by deleting all out-edges of
nodes in P. It can be seen that (i) F is a forest and (ii) the
leaves of the F are exactly X∪P.

Our next step is to guess the values assigned by
the lineage function to P. We denote this guess by a
function f ′ :P→Y , and we repeat the remaining steps
for each possible f ′, keeping the option that gives us
the minimum cost lineage function. The number of
possible functions f ′ is |P||Y| =O(k2p−1). This is where
the exponential part of our algorithm occurs.

Given P and f ′, we now have a forest F where the
assignment of a lineage function is fixed on each of the
leaves. That is, we know that for any lineage function f on
V(N), we must have that f (x)={�(x)} for each x∈X, and
f (v)= f ′(v) for each v∈P. We now calculate the optimum
assignment on the remaining nodes, using standard
dynamic programming techniques.

For each internal node u of a tree T in F (starting
with the lowest nodes), and each S∈Y , we calculate and
store a value �(u,S) representing the total cost of an
optimal assignment to the descendants of u in T, under
the assumption that v is assigned the value S. If we have
already calculated the values �(v,S′) for each child v of u
and S′ ∈Y , then it is easy to calculate the value of �(u,S).
For each child v, we simply choose the assignment S′
to v that minimizes the value of �(v,S′) together with
the costs imposed on v, under the assumption that u is
assigned S and v is assigned S′. Doing this for each child
of u gives us the optimum cost with respect to the choice
(u,S). Calculating the costs on v can be complicated
by the fact that v may have parents other than u—
namely, a parent u′ in P whose out-edge was deleted
in the construction of F. However, as the assignment
on u′ is fixed in the “guessing phase” of the algorithm,

we can account for this parent without increasing the
complexity of the algorithm.

Once the values �(u,S) have been calculated for each
root u of a tree in F and each S∈Y , we can find the optimal
cost of a lineage function on V(N) by combining the
optimal lineage functions for each tree. In Algorithm 1,
we give a pseudocode for the algorithm outlined in this
section. (The pseudocode contains some simplifications
compared to the method described in the Appendix, as
that description has a few complications to allow for the
extension to network level.) The algorithm calls as a sub-
method the algorithm COST(v,S,S′,f ′). This algorithm
returns the value wf (v) achieved by any lineage function
f that extends f ′ and assigns value S′ to v, and value S
to the only parent u of v not in P. If every parent of v
is in P, we replace S with the placeholder value ∅, and
COST(v,∅,S′,f ′) returns the value wf (v) achieved by any
lineage function f that extends f ′ and assigns value S′ to
v. Thanks to Algorithm 1, we have the following:

Theorem 3. PPP is fixed-parameter tractable with respect to
k and p.

We work through an example application of the
algorithm in the Appendix.

To recapitulate, in this section we have shown how the
parental parsimony score of a phylogenetic network and
a given character can be computed. We have proven that
the algorithm scales well for large numbers of taxa, as
long as the number of reticulate nodes in the network,
and the number of possible states per character, are
small.

Parameterizing by Level
We now show how to extend our fixed-parameter

tractability result to the level of a network. Our approach
in this section builds on the dynamic programming
technique used in the previous section. Given a
phylogenetic network N, a blob of N is a maximal
subgraph of N for which the underlying undirected
graph is biconnected. Call a blob a trivial blob, if it
consists of two nodes joined by a single edge. It is easy
to show that the blobs of N partition the edges of N, that
every node of N is in at most 1 nontrivial blob (using
the fact that N is binary), and that every blob in N has
exactly one root. Given a blob B in N, let rB denote the
number of reticulation nodes in B. The level l of N is the
maximum value of rB over all blobs B in N. For example,
the network in Figure 9 contains two blobs, and its level
is 2 since rB1 =2 and rB2 =1.

Consider a lowest blob B in N, with �B the root of
B. Then B has reticulation number at most l. Therefore
using the same approach as the previous section, we
can calculate for each S∈Y the minimum cost of an
�-consistent lineage function that assigns �B the value
S. We apply this idea recursively. For each blob B of
N (starting with the lowest), we use our algorithm to
calculate the minimum cost �(�B,S) of an �-consistent
lineage function f on B and its descendants, for which

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article/67/3/518/4767820 by Bibliotheek TU

 D
elft user on 03 D

ecem
ber 2021

[17:32 12/4/2018 Sysbio-OP-SYSB170096.tex] Page: 526 518–543

526 SYSTEMATIC BIOLOGY VOL. 67

Data: Binary network N on X; character � :X →{1,...,p}
Result: PSpt(N,�)
Let Y =P({1,...,p})\{∅};
Let P be a set containing one parent of each reticulation node;
Let F be the forest obtained from N by deleting the out-edges of P;
Let T1,...,Tr be trees of F, with roots �1 =�N ,...,�r ;
for each function f ′ :P→Y with |f ′(�N)|=1 do

for i=1,...,r do
for each vertex u of V(Ti) (in reverse topological ordering)

and each S∈Y do
if u is a leaf in X,

H[u,S] :=
{

0 if S={�(u)}
∞ otherwise

if u∈P,

H[u,S] :=
{

0 if S= f ′(u)
∞ otherwise

if u has one child v in Ti, set H[u,S] to

min
S′∈Y

(H[v,S′]+COST(v,S,S′,f ′))

if u has two children v1,v2 in Ti, set H[u,S] to

min
S1∈Y

(H[v1,S1]+COST(v1,S,S1,f ′))

+ min
S2∈Y

(H[v2,S2]+COST(v2,S,S2,f ′))

end
end optf ′ := min

j∈{1,...,p}
H[�1,{j}]

+
r∑

i=2

min
S∈Y

[
COST(�i,∅,S,f ′)+H[�i,S]]

end
return the smallest value of optf ′ over all f ′

Algorithm 1: Computing the parental parsimony score
when the parameter is the number of reticulation nodes.

Data: Node v in N with at most one parent u not in P; set S in
Y∪∅; set S′ in Y ; assignment f ′ :P→Y

Result: Cost on edges entering v for any lineage function f that
extends f ′ and assigns f (u)=S (if u exists) and f (v)=S′.

if v=�N , return 0;
Let Pv contain the parents of v that are in P;

if |S′|> |S|+
∑
u∈Pv

|f ′(u)| then

return ∞
else

return |S′ \(S∪⋃
u∈Pv

f ′(u))|
end

Algorithm 2: Algorithm COST, a subroutine of
Algorithm 1 for computing the local cost at a node v.

f(�B)=S. Here, we treat the roots of the “child blobs” B′
of B as leaves of B. The only difference from our previous
algorithm is that, rather than being assigned a particular
value by �, these leaves can be assigned different values,
and impose a cost of �(�B′ ,S′) when assigned the value
S′. This difference only requires a small change to our
previous algorithm, and implies the following:

Theorem 4. PPP is fixed-parameter tractable with respect to
l and p.

FIGURE 9. The network in the figure contains two nontrivial blobs
B1 and B2, depicted in gray.

Less formally, in this section, we have shown how
the parental parsimony score of a phylogenetic network
and a given character can be computed even when the
numbers of taxa and reticulate nodes in the network are
large, as long as the reticulate nodes are spread out over
different reticulated components containing only a small
number of reticulate nodes each, and the characters have
a small number of possible states.

EXTENSIONS

In the previous sections, our proofs did not depend
on the exact definition of a lineage function, a character,
or the weight of a lineage function. In fact, the proofs
depended only on the following properties:

• A lineage function is a function from the nodes of a
network N to a set Y of size �;

• A character is a function from the leaves of N to a
subset of Y , and a lineage function is �-consistent if
it extends �;

• The weight w(f) of a lineage function f on a network
N is defined to be

∑
v∈V(N)wf (v), where wf (�N)=0,

and for any v∈V(N)\{�N} the value wf (v) depends
only on the values assigned by f to u and each of
its parents;

• A lineage function f on N is rooted if f (�n) is within
some specified subset of Y .

If the above properties hold, then the previous result
(c.f. proof of Theorem 4 in Appendix) implies the
following:

Theorem 5. For any rooted binary phylogenetic network N
with level l, and for character � on N, an �-consistent rooted
lineage function on N of minimum weight can be found in
time O(�l+3|V(N)|).

This implies that, for example for binary characters
(�=3), we should certainly be able to deal with networks
with l=4, that is at most 4 reticulations per blob.

We can therefore extend the results of our article to
other measures besides parental parsimony, in cases
where the function to optimize can be expressed as a
minimum weight lineage function with respect to some

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article/67/3/518/4767820 by Bibliotheek TU

 D
elft user on 03 D

ecem
ber 2021

[17:32 12/4/2018 Sysbio-OP-SYSB170096.tex] Page: 527 518–543

2018 VAN IERSEL ET AL.—PARSIMONY ON NETWORKS 527

weight measure. In the remainder of this section, we
sketch how to do this for some biologically relevant
examples.

Extending Characters to Sets of States
For some applications, we may want to sample

multiple individuals from the same species, and
potentially obtain different states for each of them (see
e.g., Zhu et al. 2016). In such cases, we would like to
model parental trees as MUL trees, in which the number
of leaves labeled with taxon x∈X is equal to the number
of different states recorded for individuals in x. We then
seek a character on the parental tree in which the set of
states assigned to leaves labeled with x is equal to the set
of states observed in individuals in x.

Our methods extend naturally to this scenario—we
simply allow the input character � to be a function
L(N)→P({1,...,p}) rather than L(N)→{1,...,p}. See for
example species b in Figure 10. That is, we now assume
that each leaf may be assigned a set of states rather
than a single state. We believe this natural extension
has other good biological motivations: in addition to
the application to SNPs in a population given above,
the different states can also model different characters
for homologous copies of a gene present in the genome.
However, this easy extension here only works when we
have sets of states, that is, when the recorded states of
a taxon are all different. In the next subsection, we will
show how to get rid of this restriction.

Extending Characters to Multisets of States
It makes also sense to consider the problem where a

character assigns each leaf not just to a set of states, but
a multiset of states, see for example species a and d in
Figure 10. This requires a bit more work than extending
characters to sets, but we may proceed as follows:

• The set Y now becomes a set of multisets over
{1,...,p}. In order to bound |Y|, it can be shown

FIGURE 10. An example of application of the extension to multisets
of states. For the four species in the network, we have the following
samples: two individuals for species a, both with state 0, one individual
for species c with state 0, three individuals for species d with states 1, 1,
and 2 and, finally, three individuals for species b, with states 0, 1, and 2.

that each state is assigned to a single node no more
times than the maximum number of times it is
assigned to a single leaf. Thus, we get a bound on
|Y| in terms of the sizes of the multisets assigned
by �.

• Given a lineage function f and nonroot node v,
the weight wf (v) can still be written as |f (v)\
(
⋃

u∈par(v) f (u))|, except that the union now has to
be taken as a multiset union—that is if a single
state appears once in f (u1) and twice in f (u2) for the
two parents u1,u2 of v, then it appears three times
in

⋃
u∈par(v) f (u), and if it furthermore appears

five times in f (v), it would appear two times in
f (v)\(

⋃
u∈par(v) f (u)).

Biologically, this means that we can handle situations
where multiple individuals are sampled per species, or
homologous copies of a gene are present in a genome.

Softwired Parsimony
We can represent softwired parsimony with the

following adjustments:

1. The set Y is the set of all sets containing a single
state, together with the empty set.

2. The weight wf (v) is defined as for parental
parsimony: it is ∞ if |f (v)| is bigger than∑

u∈par(v) |f (u)|, and |f (v)\(
⋃

u∈par(v) f (u))|
otherwise. Thus, any node v is taken to be
part of the chosen displayed tree if |f (v)|=1. Also,
if v is not the root of the network, wf (v)=∞ if
there is no u∈par(v) with |f (u)|=1 (since any node
in the displayed tree except for �N must have a
parent); otherwise wf (v)=0 if there is an available
parent node assigned the same state (which is
then taken as the parent of v in the displayed tree
tree), and wf (v)=1 if there is not.

This means that, for data where no ILS or
allopolyploidy is present/expected, a parental
parsimony-based method can easily be set to use
the softwired parsimony score instead of the parental
parsimony score. In the next subsection, we show that
even the hardwired parsimony score can be computed
using our model. However, this is less interesting
biologically since hardwired parsimony does not seem
to be a reasonable model for any data that is not purely
tree-like.

Hardwired Parsimony
We can represent hardwired parsimony with the

following adjustments:

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article/67/3/518/4767820 by Bibliotheek TU

 D
elft user on 03 D

ecem
ber 2021

[17:32 12/4/2018 Sysbio-OP-SYSB170096.tex] Page: 528 518–543

528 SYSTEMATIC BIOLOGY VOL. 67

• The set Y is the set of all sets containing a single
state. (Note we do not allow the empty set—
hardwired parsimony requires that every node is
assigned a state.)

• The weight wf (v) is defined as follows: wf (v)=|u∈
par(v) : f (u) �= f (v)|.

Allowing for Gene Duplication
Returning to parental parsimony: our current

definition of wf sets wf (v)=∞ if f assigns v a larger set
than the combined sizes of sets assigned to its parents.
This reflects the requirement that each split in a parental
tree must correspond to a split in the network—when
the parental tree splits, its out-edges must go down
different edges of the network, and thus a node u cannot
contribute more than f (u) branches towards one of its
children v. We can relax this requirement, and allow
for duplication events in parental trees—thus, a parental
tree can split with both child edges continuing down the
same network edge, and a given network node can end
up containing more “branches” than all of its parents
combined.

To express this, we simply drop the requirement that
wf (v)=∞ if |f (v)|>∑

u∈par(v) |f (u)|, and just have |f (v)\
(
⋃

u∈par(v) f (u))| for all nonroot nodes v.
The bound on Y remains bounded by a function of the

size of the (multi)sets assigned to leaves by �.
If we are interested in minimizing duplications

instead of parsimony score, we can instead set wf (v)=
max{0,|f (v)|−∑

u∈par(v) |f (u)|}.
If we are interested in minimizing both parsimony

score and duplications, we can simply add the two
version of wf together (or any weighted combination
of them, if one is considered more important than the
other).

Minimizing Gene Loss
We can express the number of gene losses

from a parsimony tree by setting wf (v)=
max{0,(

∑
u∈par(v) |f (u)|)−|f (v)|}—this is the number of

branches that passed through parents of v and were not
passed on to v. In the case of an lateral gene transfers
network, it may be the case that some edge uv is a
secondary arc (see Cardona et al. 2015), in which not
all genes are expected to be transferred, and therefore
we do not care about gene losses on this arc. In such
cases, we do not count u towards the set par(v) for the
purposes of wf (v).

As with gene duplications, we can combine this score
with other scores like parsimony and gene duplication,
if we are interested in multiple measures.

To recapitulate the last two subsections, we are able
to deal with gene duplication events, and we are able to
take such events, as well as the number of gene losses,
into account in the computed score.

MODELING ILS
We now show how lineage functions may be applied

in the context of ILS, which is one of the processes by
which a gene tree and a species tree may come to differ.
The minimize deep coalescences (MDC) criterion has
been suggested to quantify the amount of ILS (Note
that other models to quantify ILS taking into account
also gene duplications and gene losses (e.g., Wu et al.
2014) and even horizontal gene transfers (e.g., Chan et al.
2017 exist.) involved in the evolution of a given gene
(Maddison 1997). The MDC criterion has been recently
extended to species networks (Yu et al. 2013a): the gene
tree and species network are assumed to be given, and
the task is to find an embedding of the gene tree within
the species tree in a way that minimizes the ILS score
(see below for formal definitions). This approach is not
directly applicable to our problem because here we are
not given as input a gene tree. However, it can be still
of use: given a binary network and a character on X,
we can try and find a combination of gene tree and
embedding that minimizes (some weighted combination
of) the parsimony score and the ILS score. Thus in a sense
our approach “cuts out the middle man” by not requiring
a separate method to construct candidate gene trees.

Definitions in this section are based on those in Yu
et al. (2013a), but we generalize the definitions in that
article to also handle phylogenetic networks, rather than
just species trees.

Definition 3. Given a species network N on X, let Path(N)
denote the set of directed paths in N (including paths of length
0). Given a tree T on X, a coalescent history is a function
h :V(T)∪E(T)→V(N)∪Path(N) such that

• for each x∈V(T) and e∈E(T), h(x)∈V(N) and h(e)∈
Path(N);

• h(x)=x for all x∈X;

• for each edge e=xy∈E(T), h(e) is a path in N from h(x)
to h(y).

Definition 4. Given a network N on X, a tree T on X, and a
coalescent history h :V(T)∪E(T)→V(N)∪Path(N), we say
an edge xy∈E(T) passes through an edge uv∈E(N) if uv is
part of the path h(xy). For any edge uv∈E(N), the number of
lineages in uv is the number of branches of T passing through
the edge uv. The number of extra lineages XLT,h(uv) in uv is
the number of lineages in uv minus 1. The deep coalescence
XLT,h(N) is the sum of XLT,h(uv) over all edge uv in N.

We note that if h(x)=h(y) for some edge xy∈E(T), then
xy does not pass through any edge of N. Intuitively, this is
because x and y are considered to occur at relatively close
times, and therefore the edge between x and y should not
count as an “extra lineage” in the context of ILS.

We will now define the combined ILS score of a species
N on X together with a character � :X →[p]. Recall that
softwired and hardwired parsimony are both defined
in terms of the minimum hardwired parsimony of a set
of gene trees on X satisfying certain conditions. In the

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article/67/3/518/4767820 by Bibliotheek TU

 D
elft user on 03 D

ecem
ber 2021

[17:32 12/4/2018 Sysbio-OP-SYSB170096.tex] Page: 529 518–543

2018 VAN IERSEL ET AL.—PARSIMONY ON NETWORKS 529

case of softwired parsimony, the trees are required to
be displayed by N, whereas for parental parsimony, the
trees have to be parentally displayed by N. The notion
of combined ILS score generalizes this further—now we
allow any tree on X, but we impose an additional cost
based on the minimum deep coalescence of the tree with
respect to N. More formally:

Definition 5. Fix two positive integers A,B. Given a network
N on X and a character � :X →[p], the combined ILS score of
(N,�), denoted ILS(N,�) is the minimum value of

A·PShw(T,�)+B·XLT,h(N)

over all gene trees T on X and coalescent histories h for T:

We now show that we can model the combined ILS
score with lineage functions.

Definition 6. Given a network N, a lineage function f :
V(N)→P([p]), and a node v∈V(N), the ILS weight of v with
respect to f , denoted wf (v), is defined as follows. If v=�N then
wf (v)=A·max(|f (v)|−1,0). If v �=�N and f (u)=∅ for each
parent u of v but f (v) �=∅, then wf (v)=∞. Otherwise, wf (v)
is defined to be the minimum value of

A·|f (v)\(
⋃

u∈par(v)

Su)|+B·
∑

u∈par(v)

max(|Su|−1,0),

where the minimum is taken over all possible sets {Su :u∈
par(v)} such that for each u∈par(v), Su is a subset of f (v)∩
f (u).

The total ILS weight of f is defined as

w(f)=
∑

v∈V(N)

wf (v).

The rough idea behind this definition is that Su
corresponds to the states of branches “passing through”
the edge uv. Thus min(|Su|−1,0) is the number of extra
lineages in uv, while |f (v)\(

⋃
u∈par(v)Su)| is the number

of state changes that had to occur (either because a given
state in v was not present in any parent of v, or because
the branch with that state did not pass through the edge
leading to v).

For the purposes of this section, we say a lineage
function f :V(N)→P([p]) is rooted if f (�N) �=∅ (note that
we may have |f (�N)|>1).

Lemma 3. Given a species network N on X and a character
� :X →[p], the combined ILS score of (N,�) is the minimum
total ILS weight of a rooted �-consistent lineage function
f on N.

Theorem 5 implies that a lineage function of minimum
weight can be found in time O(�l+3|V(N)|), where l is
the level of the network and � is the size of the set Y for
which f is the function f :V(N)→Y . In this case we have
that Y =P([p]), and so �=2p. By Lemma 3, we have that
the combined ILS score of (N,�) can be found in time
O(�l+3|V(N)|)=O(2(l+3)p|V(N)|). Note that this implies
the following result:

Corollary 1. Given a species tree T on X and a binary
character � :X →[p], the combined ILS score of (T,�) can be
found in polynomial time.

It is also interesting to notice that, Yu et al. (2013a)
gave an algorithm to find the minimum XLT,h(N) over
all possible coalescent histories for a given gene tree T

having a complexity of O
(∑

x∈L(N)h(x)·2
∑

x∈L(N) h(x)a(x)
)

,
where a(x) is the number of alleles sampled from x,
and h(x) is the maximum number of reticulations on a
path from the root of N to x. Thus, their algorithm is
exponential in X.

To summarize this section, we have shown that
our model and algorithm can also be used when ILS
is expected to have occurred and is not only due to
hybrid speciations. In such situations, the evolution
of a character down a network can branch anywhere
in the network, not only in branching nodes but also
in-between them. To make sure that we do not postulate
more ILS than necessary, we look at the number of
additional lineages, that is the number of lineages of
the character genealogy that evolve down a network
branch in addition to the single lineage that one would
expect without ILS. We have shown that, using the same
algorithm as before, we can minimize a combination of
the parsimony score and the ILS score.

Note that we can combine all extensions presented
above in a “blending” of ILS modeling, duplication and
losses minimization with sets/multisets of states, and
deal with it via lineage functions.

DISCUSSION

Parental parsimony avoids several shortcomings of the
previous versions of parsimony on networks: hardwired
and softwired. In particular, it can be used in the case of
allopolyploid hybridization and can easily handle data
with multiple individuals per species. Moreover, it can
even be used in a different framework including gene
duplication, gene loss, and ILS.

However, the improved modeling power of parental
parsimony comes at a cost of higher computational
demands. Indeed, we have shown that computing the
parental parsimony score of a given network is already
NP-hard for relatively simple networks (no reticulate
branch has a reticulate ancestor and each internal
node has at least one nonreticulate descendant branch).
Nevertheless, our dynamic programming algorithm can
compute this score efficiently for networks that are
reasonably tree-like, in the sense that the “level” of the
network is not too large. For networks with large level,
our algorithm will be too slow to be practical. Therefore,
an important open question is whether it is possible
to reduce the amount of guessing in the algorithm, to
improve its applicability to high-level networks.

It is also important to note that another shortcoming
of hardwired and softwired parsimony has not been
overcome yet: When computing a parsimony score of

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article/67/3/518/4767820 by Bibliotheek TU

 D
elft user on 03 D

ecem
ber 2021

[17:32 12/4/2018 Sysbio-OP-SYSB170096.tex] Page: 530 518–543

530 SYSTEMATIC BIOLOGY VOL. 67

a phylogenetic tree or network, we always consider
each character separately, using the assumption that
different characters evolve independently. While this
is a reasonable assumption for phylogenetic trees, it
is not always safe to assume this for phylogenetic
networks. Indeed, characters that are close together in
a sequence could be more likely to follow the same
parental tree inside the network. However, taking this
dependence into account when computing the parental
parsimony score is problematic. One option would be
to compute breakpoints and to force characters within
the same block (consisting of all characters between two
breakpoints) to choose the same parental tree in a similar
flavor to what done in Hein (1990, 1993) and Nguyen et al.
(2007). However, extending our algorithm to handle this
would make the running time exponential in the number
of characters considered simultaneously. Hence, such an
approach would not be useful in practice.

At the same time, it is worth considering whether
the improved modeling power of parental parsimony is
worth the extra computational effort. For example, it has
been shown recently that the effects of ILS are not always
relevant (Scornavacca and Galtier 2017).

Therefore, a logical next step is to implement the
proposed algorithm and to do extensive simulations and
tests on practical data in order to find out how different
the softwired and parental parsimony scores are, and
which score is most relevant to be used for analyzing
different kinds of biological data sets.

FUNDING

This work was supported by the Netherlands
Organization for Scientific Research (NWO), including
Vidi grant [639.072.602 to L.v.I. (in part) and M.J.]; 4TU
Applied Mathematics Institute to L.v.I.; and French
Agence Nationale de la Recherche Investissements
d’Avenir/Bioinformatique [ANR-10-BINF-01-02,
Ancestrome to C.S., in part].

ACKNOWLEDGEMENTS

The authors wish to thank Fabio Pardi for useful
discussions and the editor and reviewers for useful
suggestions and comments.

APPENDIX

Equivalence of Lineage Functions and PPP
The purpose of this section is to prove Theorem 1:

Theorem 1. For any binary network N on X and p-
state character � on X, PSpt(N,�)=min{w(f) : f is a rooted
�-consistent lineage function on N}.

Recall the definition of U∗(N). For each v∈V(N), let
�v denote the set of all nodes � in U∗(N) for which �
is a path in N from �N to v. Before we can show the

equivalence of PPP with lineage functions, we need the
following technical lemma. Informally, it says that each
state is assigned to at most one �∈�v for each v∈V(N).

Lemma 4. For any binary network N on X and p-state
character � on X, there exists a tree T ∈PT (N) and p-state
character � on V(T) extending �, with

∑
uv∈E(T)c�(uv)=

PSpt(N,�) such that �(�) �=�(�′), for any v∈V(N) and
distinct �,�′ ∈�v.

Proof . Recalling that PShw(T,�)=PShw(T′,�) whenever
T′ is derived from T by suppressing nodes of in-degree
and out-degree 1, we may treat a parental tree T ∈PT (N)
as a tree on X that is isomorphic to a subtree of U∗(N).
So let T be such a tree, and � a p-state character V(T),
such that

∑
uv∈E(T)c�(uv)=PSpt(N,�). For each u∈V(N),

let Wu be the set of nodes in T that are mapped to a node
in �v by the isomorphism.

If �(x) �=�(y), for any u∈V(N) and distinct x,y∈Wu,
then (T,�) satisfies the claim. So, now assume this is not
the case. We will adjust T and � to produce a pair (T′,�′)
for which the claim holds.

Choose a lowest u in N for which there exist distinct
x,y∈Wu with �(x)=�(y). We have that u is not a leaf
of N, as |Wu|=1 for such v. Our next to step is show
that we may assume �(z) �=�(x), for any child z of x, and
that furthermore �(z) �=�(y′), for any child z of x and
y′ ∈Wu \{x}.

If there exists a child z of x and y′ ∈Wu \{x} such that
�(z)=�(y′), adjust T and � as follows. Let v be the child of
u in N for which z∈Wv, and note that z is the only child
of x in Wv. If y′ has a child in Wv then denote this child by
z′. Note that, since z and z′ are both in Wv and z is lower
than x, we have that �(z) �=�(z′). Now delete the edges xz,
y′z′ and add the edges xz′, y′z (or just delete xz and add
y′z if z′ does not exist). Let T′ denote the resulting tree.

Before continuing, we need to show that T′ is still a
parental tree of N. To do this, let � :V(T)→V(U∗(N))
denote the isomorphism from T to a subtree of U∗(N).
Then �(x) is a node in U∗(N) corresponding to a path in
N from �N to u. Let �x denote this path, and similarly
let �y′ denote the path from �N to u corresponding to
�(y′). Note that for every descendant w of x in Wv, �(w)
corresponds to a path that begins with �x. Similarly, for
every descendant w′ of y′ in Wv, �(w′) corresponds to
a path that begins with �y′ . To define an isomorphism
from T′ to a subtree of U∗(N), we can therefore do the
following: If w∈V(T′) is not a descendant of z or z′
then set �′(w)=�(w). For each descendant w of z, let
�′(w) be �(w) with the path segment corresponding to
�x replaced with �y′ . For each descendant w of z′, let
�′(w) be �(w) with the path segment corresponding to
�y′ replaced with �x. Then �′ is an isomorphism from
T′ to a subtree of U∗(N), and so T′ is a parental tree of N.

So if there exists a child z of x and y′ ∈Wu \{x} with
�(y′)=�(z), the tree T′ as described above is a parental
tree of N. Furthermore consider

∑
uv∈E(T′)c�(uv), where

� is the same character as before (in particular,
�(z) and �(z′) are unchanged even though they

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article/67/3/518/4767820 by Bibliotheek TU

 D
elft user on 03 D

ecem
ber 2021

[17:32 12/4/2018 Sysbio-OP-SYSB170096.tex] Page: 531 518–543

2018 VAN IERSEL ET AL.—PARSIMONY ON NETWORKS 531

have different parents in T′). This value is equal
to

∑
uv∈E(T)c�(uv)+(c�(y′z)−c�(xz))+(c�(xz′)−c�(y′z′)).

If �(y′) �=�(x), then c�(y′z)=0<1=c�(xz), and c�(xz′)≤1=
c�(y′z′) (since �(z′) �=�(z)=�(y′)). Thus

∑
uv∈E(T′)c�(uv)<∑

uv∈E(T)c�(uv)=PSpt(N,�), a contradiction. So, we must
have that �(y′)=�(x), and therefore

∑
uv∈E(T′)c�(uv)=∑

uv∈E(T)c�(uv)=PSpt(N,�).
Thus, we now have that for any child z of x, there is

no y′ ∈Wu \{x} with �(y′)=�(z) unless �(x)=�(y′)=�(z),
and in such a case we may produce a parental tree of the
same parsimony score such that z is no longer a child of x
(and every node except x and y′ has the same children as
before). Repeating this process for any child z of x with
�(z)=�(x), and recalling that there exists y∈Wu \{x} with
�(y)=�(x), we may now assume that for any child z of x,
�(z) �=�(y′) for any y′ ∈Wu (including x).

Now if x has no children, we can delete x from T.
The resulting tree T′ is still isomorphic to a subtree of
U∗(N), and there exists a character �′ on V(T′) such that∑

uv∈E(T′)c�(uv)≤∑
uv∈E(T)c�(uv)=PSpt(N,�) (we let �′

be � restricted to T′). Otherwise, we can define �′ to be the
character on T such that �′(x)=�(z) for some child z of x,
and �′(w)=�(w) for all other w. Then

∑
uv∈E(T)c�′ (uv)≤∑

uv∈E(T)c�(uv)−1+1=PSpt(N,�). Furthermore �′(x) �=
�(y′) for any y′ ∈Wu \{x}, as �(z) �=�(y′).

As we either reduce the number of nodes in T,
or the number of pairs x,y∈Wu with �(x)=�(y), this
process cannot be repeated indefinitely. It follows that
by applying it exhaustively, we eventually reach a tree
T′ ∈PT (N) and p-state character �′ on V(T′) that satisfy
the claim.

Given Lemma 4, we can now prove one direction of
Theorem 1:
Lemma 5. Given a phylogenetic network N on X and a p-
state character � on X, there exists a rooted �-consistent lineage
function f on N such that w(f)≤PSpt(N,�).

Proof . Let T be a parental tree in N, and � an extension
of � to V(T) such that

∑
uv∈E(T)c�(uv)=PSpt(N,�). Let

T∗ be the subtree of U∗(N) such that T can be obtained
from T∗ by suppressing nodes of in-degree and out-
degree 1. Let �∗ be an extension of � to V(T∗) such that∑

��′∈E(T∗)c�∗ (��′)=∑
uv∈E(T)c�(uv). (Such a �∗ exists,

as PShw(T∗,�)=PShw(T,�).)
Then we may define a lineage function f on N as

follows: for all v∈V(N), set f (v)={�∗(�) :�∈�v}. That is,
f (v) is the set of states assigned to at least one node of T∗
corresponding to a path in N ending at v. By Lemma 4,
we may assume that |f (v)|=|�v|.

We now show that f is a rooted, �-consistent lineage
function on N. To see this, observe that T∗ has exactly
one node in ��N , and exactly one node �x in �x for each
x∈X, and that for each x∈X, f (x)={�∗(�x)}={�(x)}.

Finally we show that w(f)≤PSpt(N,�). Observe first
that for any v∈V(N)\{�N}, each node in �v has a
parent in �u for some u∈par(v). Thus |f (v)|=|�v|≤∑

u∈par(v) |�u|=∑
u∈par(v) |f (u)|, and so wf (v) �=∞.

Observe that for any v �=�N , if there exists �′ in
�v with parent � and �∗(�′)∈ f (v)\(

⋃
u∈par(v) f (u)),

it must be the case that �∗(�′) �=�∗(�), and so
c�∗ (��′)=1. Therefore

∑{c�∗ (��′) :��′ ∈E(T∗),�′ ∈
�v}≥|f (v)\(

⋃
u∈par(v) f (u))|=wf (v).

Adding up over all v∈V(N)\�N , we have

w(f)=
∑

v∈V(N)

wf (v)=
∑

v∈V(N)\�N

wf (v)

≤
∑

v∈V(N)\�N

∑
{c�∗ (��′) :��′ ∈E(T∗),�′ ∈�v}

=
∑

��′∈E(T∗)

c�∗ (��′)=
∑

uv∈E(T)

c�(uv)=PSpt(N,�)

as required.

We now prove the other direction of Theorem 1:

Lemma 6. Given a phylogenetic network N on X and a p-state
character � on X, for any rooted �-consistent lineage function
f on N it holds that w(f)≥PSpt(N,�).

Proof . Let f be a rooted �-consistent lineage function
on N, and assume w.l.o.g. that w(f)<∞. We will
construct a tree T∗ on X which is a subtree of U∗(N),
and a character �∗ on V(T∗) that extends �, such
that

∑
��′∈E(T∗)c�∗ (��′)≤w(f). Then by suppressing

nodes of in-degree and out-degree 1 in T∗, we get
a tree T ∈PT (N) such that PShw(T,�)=PShw(T∗,�)≤∑

��′∈E(T∗)c�∗ (��′)≤w(f). The pair (T∗,�∗) will be such
that for each v∈V(N), if T∗

v is the set of nodes in T∗
corresponding to a path ending in v, then |T∗

v |=|f (v)|
and {�∗(�) :�∈T∗

v }= f (v).
We construct T∗ and �∗ in a top-down manner. Taking

a topological ordering of V(N), for each v∈V(N) in turn
we construct the vertices of T∗ corresponding to paths
ending at v.

Initially, we let T∗ be the single node ��N in
U∗(N) corresponding to �N (i.e., the single-vertex path
consisting only of �N). As f is rooted, f (�N) contains a
single element of {1,...,p}; we let �∗(��N) be this single
element.

Now consider some v∈V(N)\{�N}, and assume we
have already constructed the set of nodes in T∗
corresponding to paths ending in u for any u∈par(v). Let
T∗

par(v) be this set of nodes. We mark a subset of nodes of
T∗

par(v) and add children to them, as follows:
For each i∈ f (v)∩(

⋃
u∈par(v) f (u)) in turn, choose an

element � of T∗
u,u∈par(v), for which �∗(�)= i. For the

chosen �, mark � and add the path �′ =�{uv} as a child
of �. Set �∗(�′)= i. Observe that c�∗ (��′)=0.

After this, for each i∈ f (v)\(
⋃

u∈par(v) f (u)) in
turn, choose a currently-unmarked element � of
T∗

par(v). (Such an element must exist, as otherwise
|f (v)|>∑

u∈par(v) |T∗
u|=∑

u∈par(v) |f (u)| and wf (v)=∞, a
contradiction.) For the chosen �, mark � and add the
path �′ =�{uv} as a child of �, where u∈par(v) is such

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article/67/3/518/4767820 by Bibliotheek TU

 D
elft user on 03 D

ecem
ber 2021

[17:32 12/4/2018 Sysbio-OP-SYSB170096.tex] Page: 532 518–543

532 SYSTEMATIC BIOLOGY VOL. 67

that �∈T∗
u . Set �∗(�′)= i. Observe that c�∗ (��′)=1 (as

�∗(�) �= i).
This completes the construction of T∗

v . Observe now
that |T∗

v |=|f (v)| and {�∗(�) :�∈�v}= f (v), as required.
Furthermore observe that

∑{c�∗ (��′) :��′ ∈E(T∗),�′ ∈
�v}=|f (v)\(

⋃
u∈par(v) f (u))|=wf (v).

By construction, the resulting tree T∗ is a subgraph of
U∗(N). As f is �-consistent, T∗ will have exactly one node
corresponding to a path ending in x, for each x∈X. Thus
the tree T, derived from T∗ by suppressing nodes of in-
degree and out-degree 1, is a parental tree of N, and so∑

��′∈E(T∗)c�∗ (��′)≥PSpt(N,�). Finally, we observe that

w(f)=
∑

v∈V(N)

wf (v)=
∑

v∈V(N)\�N

wf (v)

=
∑

v∈V(N)\�N

∑
{c�∗ (��′) :��′ ∈E(T∗),�′ ∈�v}

=
∑

��′∈E(T∗)

c�∗ (��′)≥PSpt(N,�).

Combining the previous two lemmas, we get
Theorem 1.

NP-hardness—Missing Proofs
In this section, we prove Theorem 2.

Theorem 2. PPP is NP-hard, even when the character � is
binary, and the network N is tree-child and has reticulation
depth at most 1.

To prove Theorem 2, we will first give a reduction from
the following problem:

TREE-INFLUENCED BIPARTITION (TIB)
Input: A graph G= (V,E=E=�E �=), such that T = (V,E=)
is a tree spanning V and every leaf of T has degree 1 in
G; an assignment g′ :L(T)→{1,2} and an integer w.
Output: An assignment g :V →{1,2} extending g′ with
at most w unsatisfied edges, if one exists, where an edge
uv∈E= is satisfied if g(u)=g(v), and an edge uv∈E �= is
satisfied if g(u) �=g(v).

Lemma 7. Given an instance (G,g′,w) of TIB, we can in
polynomial time construct an instance (N,�) of PPP, such that
(G,g′,w) is a Yes-instance of TIB if and only if PSpt(N,�)≤w,
and such that N is tree-child and has reticulation depth at most
one, and � is binary.

Proof . Let (G= (V,E=E=�E �=),�,w) be an instance of
TIB.

We construct the network N as follows. Let T = (V,E=),
the tree formed by the edges in E=. Choose an arbitrary
nonleaf vertex of T as the root, and orient all edges in E=
away from the root. For each edge e in E�=, let ue,ve,xe,ye
be new nodes. Then let V′ =V∪{ue,ve,xe,ye :e∈E �=}, and
let E′ =E=∪{aue,bue,ueve,vexe,veye :e=ab∈E �=}. Let N =
(V′,E′). Figure 8 shows the structure on u=ue,v=ve,x=
xe,y=ye for some e=ab∈E �=.

Observe that the leaves of N are L(T) together with
xe and ye for each e∈E �=, and that {ue :e∈E �=} are the
reticulation nodes of N. We therefore have that N is tree-
child—indeed, every parent of ue has another child in T
which is a tree node (the leaves of T cannot be incident
to e∈E�= by definition of a TIB instance), and every other
node either has a tree node child or is a leaf. As there is
no path from ue to ue′ for any e �=e′, we have that there is
at most one reticulation node on any path.

Now, we define the binary character � :L(N)→
P({1,2}) as follows. If x∈L(T) then �(x)={g′(x)}. If x∈
L(N)\L(T), then x is either xe or ye for some e∈E �=. If
x=xe then �(x)=1, and if x=ye then �(x)=2.

We now show that if (G,g′,w) is a Yes-instance of TIB
then PSpt(N,�)≤w.

Indeed, let g :V →{1,2} be an assignment extending
f ′ such that g has at most w unsatisfied edges. Then
define the lineage function f :V′ →P({1,2}) as follows.
If v∈V then f (v)={g(v)}. For each e∈E �=, set f (ue)=
f (ve)={1,2},f (xe)=1,f (ye)=2. Observe that f is rooted
and �-consistent. For any nonroot v∈V with parent
u, wf (v)=0 if and only if g(u)=g(v), and 1 otherwise.
For any e∈E �=, we have wf (ve)=wf (xe)=wf (ye)=0.
Finally for each e=ab∈E �=, we have that wf (ue)=1 if
and only if g(a)=g(b), and 0 otherwise. We therefore
have that w(f)=∑

v∈V ′\�N
wf (v)=∑

uv∈E′ wf (v)=|ab∈
E= :g(a) �=g(b)|+|ab∈E �= :g(a)=g(b)|≤w. Therefore by
Theorem 1, PSpt(N,�)≤w.

Now for the converse, suppose that PSpt(N,�)≤
w. Therefore by Theorem 1, there exists a rooted �-
consistent lineage function f on N, such that w(f)≤w.
For every v∈V, v has no reticulation ancestors, and
therefore by Lemma 2 we may assume that |f (v)|=1.
Then define the assignment g :V →{1,2} by setting g(v)
to be the unique element of f (v), for all v∈V. Observe that
g extends g′, as for all x∈L(T), x is in L(N) and therefore
{g(x)}= f (x)=�(x)={g′(x)}.

It remains to show that the number of unsatisfied
edges is at most w(f). Let F= ={uv∈E= :g(u) �=g(v)},
and F �= ={uv∈E= :g(u)=g(v)}. Thus |F=|+|F �=| is the
number of unsatisfied edges with respect to g. As
previously argued, for any edge uv in E= we have
that wf (v)=1 if g(u) �=g(v), and 0 otherwise. Therefore∑

v∈V\{�N}wf (v)=|F=|. Observe that for any e∈F �=, if
wf (xe)=wf (ye)=0 then f (ve)={1,2}, in which case either
wf (ve)>0 (if f (ue) �={1,2}) or wf (ue)>0 (otherwise). Then
wf (ue)+wf (ve)+wf (xe)+wf (ye)≥1 for each e∈F �=. Thus
w(f)=∑

v∈V ′\�N
wf (v)≥|F=|+|F�=|, and so g has at most

w unsatisfied edges.

We now need to prove that TIB is NP-hard. We do this
by reduction from the problem MAX-CUT on cubic graphs.

MAX-CUT
Input: An undirected graph H = (U,F)
Output: An assignment f :U →{1,2} such that |{uv∈E :
f (u) �= f (v)}| is maximized.

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article/67/3/518/4767820 by Bibliotheek TU

 D
elft user on 03 D

ecem
ber 2021

[17:32 12/4/2018 Sysbio-OP-SYSB170096.tex] Page: 533 518–543

2018 VAN IERSEL ET AL.—PARSIMONY ON NETWORKS 533

It is shown in Alimonti and Kann (1997) that MAX-CUT
on cubic graphs is APX-hard, from which the following
theorem follows.

Theorem 6. MAX-CUT is NP-hard, even when every vertex in
has degree 3 in H.

Lemma 8. TIB is NP-hard.

Proof . Given an instance H = (U,F) of MAX-CUT, we
construct an instance of TIB as follows.

For each x∈U, we will let x1,x2,x3 be three specific
nodes in our constructed graph G. Furthermore, we
associate each of x1,x2,x3 with a different edge incident
to x. Thus, from now on, we will say an edge e=xy is
associated with the pair (xi,yj) for some i,j∈[3], and then
xi will not appear in a pair associated with any other
edge.

For each x∈U, define the gadget Gx as follows. Let Vx
contain the nodes �x, x1, x2, x3, ax, bx, cx, dx, rx,1, rx,2, lx,1,
lx,2. Let E=,x contain the edges �xax, axx1, x1x2, x2x3, x3dx,
dxlx,1, dxlx,2, �xbx, bxcx, cxrx,1, cxrx,2, and let E �=,x contain
the edge axbx. Let Gx = (Vx,E=,x ∪E �=,x) (see Fig. A1).

Now we join the gadgets Gx by constructing an
arbitrary binary tree, with internal nodes V0, whose
leaves are {�x :x∈U}. In addition, for each edge e=xy
associated with the pair (xi,yj), we add the edge xiyj to
E�=.

Observe that the leaves of G are rx,1,rx,2,lx,1,lx,2 for
each x∈U. For each x∈U, set g′(rx,1)=g′(lx,1)={1} and
g′(rx,2)=g′(rx,2)={2}.

This concludes the construction of our TIB instance.

Claim 1. Given any assignment f :U →{1,2}, there exists
an assignment g :V →{1,2} extending g′ with at most 3|U|+
|E|−|{uv∈E : f (u) �= f (v)}| unsatisfied edges.

FIGURE A1. Example gadget Gx. Solid edges are in E=, dashed
edges are in E�=. Nodes x1,x2,x3 represent three copies of the vertex
x, with incident dashed edges going to nodes corresponding to the
three neighbors of x. Leaves are assigned as follows: g′(rx,1)=g′(lx,1)=
1, g′(rx,2)=g′(rx,2)=2. The gadget enforces that x1,x2,x3 must all be
assigned the same value.

Proof . Define g as follows. For any v∈L(T), set g(v)=
g′(v). Set g(�x)={1} for all x∈U and g(u)={1} for all
u∈V0. For each x∈U, set g(ax)=g(x1)=g(x2)=g(x3)=
g(dx)={f (x)} and g(bx)=g(cx)={3−f (x)}.

Observe that within each Gx, exactly one of the edges
dxlx,1,dxlx,2 is unsatisfied, exactly one of cxrx,1,cxrx,2 is
unsatisfied, and exactly one of �xax,�xbx is unsatisfied.
All other edges within Gx are satisfied. All edges incident
to V0 are satisfied. Finally, for each e=xy∈E associated
with (xi,yj), the edge xiyj is satisfied if and only if f (x) �=
f (y).

Thus overall, the number of unsatisfied edges in G is
3|U|+|E|−|{uv∈E : f (u) �= f (v)}|.
Claim 2. Given any assignment g :V →{1,2} extending g′,
there exists an assignment f :U →{1,2} such that g has at
least 3|U|+|E|−|{uv∈E : f (u) �= f (v)}| unsatisfied edges.

Proof . We first show that there exists an assignment g′′ :
V →{1,2} extending g′ with no more unsatisfied edges
than g, such that g′′(x1)=g′′(x2)=g′′(x3) for all x∈U. If
g(x1)=g(x2)=g(x3) for all x∈U, then there is nothing to
prove. So assume that, without loss of generality, two
elements of {x1,x2,x3} are assigned value 1, and one of
them is assigned value 2. (The case when two elements
are assigned 2 and one element is assigned 1 is dealt
with symmetrically.) Let g′′ :V →{1,2} be the assignment
such that g′′(ax)=g′′(x1)=g′′(x2)=g′′(x3)=g′′(dx)={1},
g′′(bx)=g′′(cx)={2}, and g′′(v)=g(v) for all other v. We
now show that w(g′′)≤w(g).

Clearly, it is enough to show that of the edges incident
to ax,x1,x2,x3,dx,bx,cx, g has at least as many unsatisfied
edges as g′′. To this end, let xi ∈{1,2,3} be the unique
index for which g(xi)=2. In g′′, there is at most one
unsatisfied edge incident to xi (that being the edge xiyj ∈
E�= leaving Gx). But in g there is at least one unsatisfied
edge incident to xi (as xi is a neighbor of at least one xj,
j �= i). Of the remaining edges, exactly one of the edges
dxlx,1,dxlx,2 is unsatisfied in g′′, but this is also the case
in g. Exactly one of the edges cxrx,1,cxrx,2 is unsatisfied
in g′′, but again this is also the case in g. Exactly one of
the edges �xax,�xbx,axbx is unsatisfied in g′′, but at least
these many are unsatisfied in g. Of the edges leaving Gx
leaving xj for j �= i, the same edges are unsatisfied in g
and g′′ (as the assignment on xj does not change). The
remaining edges (bxcx, and the edges on the path from
ax to dx that are not incident to xi) are satisfied in g′′.
Therefore, g′′ has at most as many unsatisfied edges as
g.

By repeating this process on g′′, we eventually get an
assignment that assigns the same value to x1,x2,x3, for
each x∈U. Therefore, we may assume in what follows
that g(x1)=g(x2)=g(x3) for all x∈U.

So now define the function f as follows. For each x∈
U, let f (x)=1 if g(x1)=g(x2)=g(x3)={1}, and f (x)={2} if
g(x1)=g(x2)=g(x3)={2}.

As noted above, there at least 3 unsatisfied edges
within Gx for each x∈U. For any e=xy∈E associated
with (xi,yj), f (x) �= f (y) if and only if xiyj is satisfied in g.

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article/67/3/518/4767820 by Bibliotheek TU

 D
elft user on 03 D

ecem
ber 2021

[17:32 12/4/2018 Sysbio-OP-SYSB170096.tex] Page: 534 518–543

534 SYSTEMATIC BIOLOGY VOL. 67

Therefore, g has at least 3|U|+|E|−|{uv∈E : f (u) �= f (v)}|
unsatisfied edges.

Putting the claims together, H has a cut of size at least
s if and only if (G,N,3|U|+|E|−s) is a Yes-instance of
TIB.

Given Lemma 7 and Theorem 8, we have Theorem 2.
In addition to being tree-child with reticulation depth

1, we note that N can be made time-consistent by adding
a gadget to each edge above a reticulation node, as in the
proof of Theorem 4.3 in Fischer et al. (2015). (A network
is time consistent if each node v can be assigned an integer
value t(v), such that for any edge uv, t(u)= t(v) if v is a
reticulation node, and t(u)< t(v) otherwise.)

Fixed-Parameter Tractability With Respect to Reticulation
Number—Missing Proofs

In this section, we show that PPP is fixed-parameter
tractable with respect to the number of reticulation
nodes. In the next section, we extend this result to
network level.

In this section and the next, we will not use any
particular properties of the weight w(f) of a lineage
function f , except that w(f) is the sum of wf (v) over all
v∈V(N), and that the value wf (v) depends only on the set
assigned by f to v and each of its parents. The fact that we
only use these properties will make it easier to extend our
results to other measures, as discussed in “Extensions to
other measures” section.

We approach the problem as one of finding a rooted �-
consistent lineage function of minimum weight. We will
find this by guessing the value of the lineage function on
a small number of nodes, such that when these nodes are
removed the network becomes a forest. We can then find
the optimal lineage function on each tree in this forest
using dynamic programming techniques.

The next lemma is stated in a slightly more general
way than we need for this section. We do this so that
we can make use of this lemma when we come to take
network level as a parameter.

Lemma 9. Let N be a binary network with a single root �N
and leaf set X, with k reticulation nodes, and suppose that for
each x∈X we are given a cost function c∗

x :Y →N0 ∪{∞}.
Then in O(�k+2 ·|V(N)|) time we can construct a table I
with entries indexed by Y , such that for each S∈Y , I[S] gives
the minimum value of w∗(f)=w(f)+∑

x∈X c∗
x(f (x)), over all

lineage functions f :V(N)→Y such that f (�N)=S.

Observe that by setting c∗
x(S′)=0 if S′ =�(x), and

c∗
x(S′)=∞ otherwise, Lemma 9 gives us a way of

calculating the minimum value of w(f) for all �-
consistent lineage functions f on N such that f (�N)=S.
By trying S={i} for each i∈{1,...,p}, this gives us a
O(�k+2 ·|V(N)|+p)=O(�k+2 ·|V(N)|) time algorithm for
calculating PSpt(N,�).

Proof of Lemma 9. Construct the set P⊆V(N) by
choosing, for each reticulation node v in N, an
arbitrary parent u of v, and adding u to P. As N is a
binary phylogenetic network with k reticulation nodes,
we have that |P|≤k.

Now consider any function f ′ :P→Y . There are at
most �k such functions. We now fix f ′, and assume in
what follows that any reticulation function f must be an
extension of f ′. Therefore, we will use the constant 	u to
denote f ′(u), for any u∈P.

For any set V′ ⊆V(N), let G(V′) denote the set of all
functions g :V′ ∪P→Y such that g(u)=	u for all u∈P.
Thus, we seek, for each S∈Y , a function f ∈G(V(N)) that
assigns f (�N)=S and minimizes w∗(f).

We now construct a forest covering V(N), as follows:
let F be the network derived from N by deleting every
out-edge of each node in P. Observe that F is an out-
forest (indeed, every node has in-degree at most 1 as
any reticulation node in N has at least one of its parents
in P). Let T1,...,Tr be the trees of this forest cover, and
let �1,...,�r be the respective roots of these trees. (Note
that some trees may consist of a single node, if a node
in P has all its parents in P.) Without loss of generality,
assume that T1 is the tree containing �N , and thus �1 =
�N . Observe that for any v∈V(Ti), any parent of v is in
V(Ti)∪P, for each i∈[r]. Therefore for any function g∈
G(V(Ti)), wg(v) is well defined (i.e., wf (v) as defined in
Definition 2 remains well defined even if we replace f
with g). Observe that all the leaves of Ti are in X∪P.

The remainder of the proof is split up into a number
of claims. The purpose of the first claim is to show that
we may consider each tree Ti independently. To this end,
we define the value w∗

i (g) for any i∈[r] and any function
g∈G(V(Ti)), as follows:

w∗
i (g)=

∑
v∈V(Ti)

wg(v)+
∑

v∈V(Ti)∩X

c∗
v(g(v))

Claim 3.

min
f ∈G(V(N))

f (�N)=S

w∗(f)

= min
g∈G(V(T1))

g(�1)=S

w∗
1(g)+

∑
i∈[r]\{1}

(min
g∈G(V(Ti))

w∗
i (g)).

Proof . For each i∈[r] and any f ∈G(V(N)), let fi be f
restricted to V(Ti)∪P. Then fi is in G(V(Ti)), and for any
v∈V(Ti)) we have wfi (v)=wf (v). Therefore:

w∗(f)=w(f)+
∑
x∈X

c∗
x(f (x))

=
∑

v∈V(N)

wf (v)+
∑
v∈X

c∗
v(f (v))

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article/67/3/518/4767820 by Bibliotheek TU

 D
elft user on 03 D

ecem
ber 2021

[17:32 12/4/2018 Sysbio-OP-SYSB170096.tex] Page: 535 518–543

2018 VAN IERSEL ET AL.—PARSIMONY ON NETWORKS 535

=
∑
i∈[r]

(
∑

v∈V(Ti)

wf (v)+
∑

v∈V(Ti)∩X

c∗
v(f (v)))

=
∑
i∈[r]

(
∑

v∈V(Ti)

wfi (v)+
∑

v∈V(Ti)∩X

c∗
v(fi(v)))

=
∑
i∈[r]

(w∗
i (fi)))

In particular, when f ′ is the lineage function in G(V(N))
with f ′(�N)=S minimizing w∗(f ′), we have

min
f ∈G(V(N))

f (�N)=S

w∗(f)=w∗(f ′)=
∑
i∈[r]

(w∗
i (f ′

i)))

≥ min
g∈G(V(T1))

g(�1)=S

w∗
1(g)+

∑
i∈[r]\{1}

(min
g∈G(V(Ti))

w∗
i (g)).

On the other hand, for each i∈[r] let fi be the
lineage function g∈G(V(Ti)) minimizing w∗

i (g), with the
additional requirement that f1(�1)=S. Then for any i �= j,
any u in the domain of both fi and fj is in P, and therefore
fi(u)=	u = fj(u). Therefore there exists a function f ′ ∈
G(V(N)) which is the union of all fi, that is, fi is f ′
restricted to V(Ti)∪P for each i∈[r]. Thus

min
g∈G(V(T1))

g(�1)=S

w∗
1(g)+

∑
i∈[r]\{1}

(min
g∈G(V(Ti))

w∗
i (g))

=
∑
i∈[r]

(w∗
i (fi)))=w∗(f ′)≥ min

f ∈G(V(N))
f (�N)=S

w∗(f).

We may now turn our attention to finding the function
g∈G(V(Ti)) minimizing w∗

i (g), for each i∈[r].
For any edge uv in Ti, and any g∈G(V′) where {u,v}⊆

V′, the value of wg(v) depends only on the values g(u)
and g(v) (since any other parent of v is in P and therefore
the value assigned to it by g is already fixed). Therefore,
for any v∈V(Ti)\�i with parent u and any S,S′ ∈Y , we
may define the constant
(v,S,S′) to be the value of wg(v)
for any g∈G(V′) and {u,v}⊆V′ such that g(u)=S and
g(v)=S′. Similarly, the value of wg(�i) depends only on
the value g(�i), and we define
(�i,S,) to be the value of
wg(�i) for any g∈G(V′) and �i ∈V′ such that g(�i)=S.
These constants will be of use in the analysis to follow.

For any u∈V(Ti), let D(u) denote the set of descendants
of u in Ti (which includes u itself), and set D′(u)=D(u)\
{u}. Now for any u∈V(Ti) and any S∈Y , we define the
value �(u,S) as as follows:

�(u,S)= min
g∈G(D(u))

g(u)=S

(
∑

v∈D′(u)

wg(v)+
∑

v∈D(u)∩X

c∗
v(g(v))),

where the minimum value is taken to be ∞ if there is
no g∈G(D(u)) such that g(u)=S.

The value �(u,S) can be calculated recursively, as we
will soon show. We first show that �(u,S) can be used to
find a g∈G(V(Ti)) minimizing w∗

i (g).

Claim 4.

min
g∈G(V(Ti))

g(�i)=S

w∗
i (g)=
(�i,S) +�(�i,S)

Proof .

min
g∈G(V(Ti))

g(�i)=S

w∗
i (g)

= min
g∈G(V(Ti))

g(�i)=S

(
∑

v∈V(Ti)

wg(v)+
∑

v∈V(Ti)∩X

c∗
v(g(v)))

= min
g∈G(V(Ti))

g(�i)=S

(wg(�i)+
∑

v∈D′(�i)

wg(v)+
∑

v∈D(�i)∩X

c∗
v(g(v)))

=
(�i,S) + min
g∈G(D(�i))

g(�i)=S

(
∑

v∈D′(�i)

wg(v)+
∑

v∈D(�i)∩X

c∗
v(g(v)))

=
(�i,S) +�(�i,S)

The next claim immediately follows from Claim 4:

Claim 5.

min
g∈G(V(Ti))

w∗
i (g)=min

S∈Y
(
(�i,S) +�(�i,S))

The next three claims give us a recursive structure
for calculating �(u,S). The first one follows from the
definitions and needs no proof.

Claim 6. If v∈L(Ti), then �(v,S)=c∗
v(S) if v∈X, and if v∈P

then �(v,S)=0 if S=	v and �(v,S)=∞ otherwise.

Claim 7. If u∈Ti has a single child v in Ti, then

�(u,S)=min
S′∈Y

(
(v,S,S′) +�(v,S′)).

Proof .

�(u,S)

= min
g∈G(D(u))

g(u)=S

⎛
⎝ ∑

v′∈D′(u)

wg(v′)+
∑

v′∈D(u)∩X

c∗
v′ (g(v′))

⎞
⎠

= min
S′∈Y

g∈G(D(u))
g(u)=S
g(v)=S′

⎛
⎝wg(v)+

∑
v′∈D′(v)

wg(v′)+
∑

v′∈D(v)∩X

c∗
v′ (g(v′))

⎞
⎠

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article/67/3/518/4767820 by Bibliotheek TU

 D
elft user on 03 D

ecem
ber 2021

[17:32 12/4/2018 Sysbio-OP-SYSB170096.tex] Page: 536 518–543

536 SYSTEMATIC BIOLOGY VOL. 67

=min
S′∈Y

(
(v,S,S′)

+ min
g′∈G(D(v))

g′(v)=S′

⎛
⎝ ∑

v′∈D′(v)

wg′ (v′)+
∑

v′∈D(v)∩X

c∗
v′ (g′(v′)))

⎞
⎠

=min
S′∈Y

(
(v,S,S′) +�(v,S′))

Claim 8. If u∈Ti has two children v1,v2 in
Ti, then �(u,S)=minS1∈Y (
(v1,S,S1) +�(v1,S1))+
minS2∈Y (
(v2,S,S2) +�(v2,S2)).

Proof .

�(u,S)

= min
g∈G(D(u))

g(u)=S

⎛
⎝ ∑

v∈D′(u)

wg(v)+
∑

v∈D(u)∩X

c∗
v(g(v))

⎞
⎠

= min
S1,S2∈Y

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

min
g∈G(D(u))

g(u)=S
g(v1)=S1

g(v2)=S2

⎛
⎝wg(v1)+

∑
v∈D′(v1)

wg(v)

+
∑

v∈D(v1)∩X

c∗
v(g(v))+wg(v2)+

∑
v∈D′(v2)

wg(v)

+
∑

v∈D(v2)∩X

c∗
v(g(v))

⎞
⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= min
S1,S2∈Y

(
(v1,S,S1)

+ min
g∈G(D(v1))
g(v1)=S1

⎛
⎝ ∑

v∈D′(v1)

wg(v)+
∑

v∈D(v1)∩X

c∗
v(g(v))

⎞
⎠

+
(v2,S,S2)

+ min
g∈G(D(v2))
g(v2)=S2

⎛
⎝ ∑

v∈D′(v2)

wg(v)+
∑

v∈D(v2)∩X

c∗
v(g(v)))

⎞
⎠

= min
S1,S2∈Y

(
(v1,S,S1) +�(v1,S1)+
(v2,S,S2) +�(v2,S2))

= min
S1∈Y

(
(v1,S,S1) +�(v1,S1))

+ min
S2∈Y

(
(v2,S,S2) +�(v2,S2))

Claim 9. In O(�2|V(Ti)|) time, we can construct a table
H with entries H[u,S] for each u∈V(Ti),S∈Y , such that
H[u,S]=�(u,S) for each choice of u and S.

Proof . We calculate the entries of H in a bottom-up order.
That is, we only calculate entries of the form H[u,S] for
some u∈V(Ti) after we have calculated all entries of the
form H[v,S′] for each child v of u.

If u is a leaf, then following Claim 6, we may set
H[u,S]=c∗

u(S) if u∈X, and if u∈P1 then we may set
H[u,S]=0 if S=	v and H[u,S]=∞ otherwise. This takes
O(1) time for each choice of S.

If u has a single child v, then following Claim 7, we
may set H[u,S]=minS′∈Y (
(v,S,S′) +H[v,S′]). Assuming
all entries of the form H[v,S] have been calculated, this
takes O(|Y|)=O(�) time.

If u has two children v1,v2, then following Claim 8,
we may set H[u,S]=minS1∈Y (
(v1,S,S1) +H[v1,S1])+
minS2∈Y (
(v2,S,S2) +H[v2,S2]). Assuming all entries of
the form H[v1,S1] and H[v2,S2] have been calculated,
this again takes O(�) time.

Thus, the construction of each individual entry in H
takes O(�) time. As there are |V(Ti)|·|Y| such entries, the
construction of H takes O(�2|V(Ti)|) time in total.

Once the table H has been constructed, then by
Claim 4 we can find min{w∗

1(g) :g∈G(V(T1)),g(�1)=S} by
calculating
(�1,S) +�(�1,S)=
(�1,S) +H[�1,S]. Similarly
by Claim 5, for each i∈[r]\{1} we can find min{w∗

i (g) :g∈
G(V(Ti))} in O(�) time by calculating
(�i,S) +�(�i,S)=

(�i,S) +H[�i,S] for each S∈Y . It follows from Claim 3
that minf ∈G(V(N))f (�N)=Sw∗(f) can be calculated in time

O(
∑

i∈[r]�2|V(Ti)|)=O(�2|V(N)|). The algorithm can
be made constructive using standard backtracking
techniques.

Finally, recall that the class G(V(N)), and therefore
the function � and table H, were defined relative to
a guessed assignment f ′ on P, and that there were
O(�k) possible guesses for this assignment. So let Hf ′
denote the table H constructed for a particular f ′. To
calculate I[S], we need to take the minimum value of
Hf ′ [�N,S] over all assignments f ′ on P. Therefore, the
total time taken to construct I is O(�k ·�2|V(N)|+�·
�k)=O(�k+2|V(N)|).

As observed above, by setting c∗
x(S)=0 if S=�(x),

and c∗
x(S)=∞ otherwise, and by trying every value

of S in Y with |S|=1, Lemma 9 gives us a O(�k+2 ·
|V(N)|+p)=O((2p)k+2 ·|V(N)|)=O(2(k+2)p ·|V(N)|) time
algorithm for calculating PSpt(N,�), thus proving
Theorem 3.

Fixed-Parameter Tractability With Respect to
Level—Missing Proofs

Recall the definition of a blob of a network N (a
maximal subgraph for which the underlying undirected

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article/67/3/518/4767820 by Bibliotheek TU

 D
elft user on 03 D

ecem
ber 2021

[17:32 12/4/2018 Sysbio-OP-SYSB170096.tex] Page: 537 518–543

2018 VAN IERSEL ET AL.—PARSIMONY ON NETWORKS 537

graph is biconnected), and that l denotes the level of N,
that is the maximum number of reticulation nodes in any
blob of N. In this section, we prove Theorem 4:

Theorem 4. PPP is fixed-parameter tractable with respect to
l and p.

For each blob B of N, let �B denote the unique root
of B. Let R denote the set of nodes in N containing �N
together with �B for every nontrivial blob B in N.

For each �∈R, let �(�) denote the subset of V(N)
consisting of � and all its descendants. Let
(�) denote
the set of nodes whose lowest nontrivial ancestor in R
is �, together with � itself. Thus, the leafs of N[
(�)] are
in X∪R, and the root of N[
(�)] is �. Furthermore,
(�)
contains the nonroot nodes of at most 1 nontrivial blob,
and therefore at most l reticulation nodes. Let L(
(�)) be
shorthand for the leaves of N[
(�)].

For any set U ⊆V(N), let F(U) be the set of �-consistent
lineage functions on U. Now for any u∈X∪T, we may
define the function c∗

u :Y →N0 ∪{∞} as follows:

c∗
u(S)= min

f ∈F (�(u))
f (u)=S

⎛
⎝ ∑

v∈�(u)\{u}
wf (v)

⎞
⎠,

where c∗
u(S)=∞ if there is no f satisfying the

conditions of the minimum.
We will show how to recursively calculate c∗

u shortly.
We first note that c∗

�N
can be used to find a minimum

weight rooted �-consistent lineage function on N. The
following claim follows from the definitions and needs
no proof.

Claim 10. For any S∈Y ,

min
f ∈F (V(N))

f (�N)=S

w(f)=c∗
�N

(S).

The next two claims show how to calculate c∗
u

recursively. The first claim again follows from the
definitions and needs no proof.

Claim 11. For any x∈X and S∈Y , c∗
x(S)=0 if S=�(x), and

c∗
x(S)=∞ otherwise.

Claim 12. For any �∈R and S∈Y ,

c∗
�(S)= min

f ∈F (
(�))
f (�)=S

⎛
⎝ ∑

v∈
(�)\{�}
wf (v)+

∑
v∈L(
(�))

c∗
v(f (v))

⎞
⎠.

Proof . Let �1,...�r be an arbitrary ordering of L(
(�)).
Observe that �(�)=
(�)∪⋃

i∈[r](�(�i)\{�i}), and that this
is a disjoint union. (In the cases where�i ∈X, the set�(�i)\{�i} is empty; we really only care about �i when �i ∈R, but
for the purposes of our proofs it is simpler to consider
all elements of L(
(�)) together.)

Then, we have the following (where as usual, if there
is no function satisfying some set of conditions then the

minimum value of functions satisfying those conditions
is taken to be ∞):

c∗
�(S)= min

f ∈F (�(�))
f (�)=S

⎛
⎝ ∑

v∈�(�)\{�}
wf (v)

⎞
⎠

= min
S1,...Sr∈Y
f ∈F (�(�))

f (�)=S
f (�1)=S1

...
f (�r)=Sr

⎛
⎝ ∑

v∈
(�)\{�}
wf (v)+

∑
i∈[r]

∑
v∈�(�i)\{�i}

wf (v)

⎞
⎠

= min
S1,...Sr∈Y

(min
f ∈F (
(�))

f (�)=S
f (�1)=S1

...
f (�r)=Sr

⎛
⎝ ∑

v∈
(�)\{�}
wf (v)

⎞
⎠

+
∑
i∈[r]

min
f ∈F (�(�i))

f (�i)=Si

⎛
⎝ ∑

v∈�(�i)\{�i}
wf (v))

⎞
⎠

= min
S1,...Sr∈Y

(min
f ∈F (
(�))

f (�)=S
f (�1)=S1

...
f (�r)=Sr

⎛
⎝ ∑

v∈
(�)\{�}
wf (v))+

∑
i∈[r]

c∗
�i

(Si)

⎞
⎠

= min
f ∈F (
(�))

f (�)=S

⎛
⎝ ∑

v∈
(�)\{�}
wf (v)+

∑
v∈L(
(�))

c∗
v(f (v))

⎞
⎠.

Claim 13. In O(�l+3|V(N)|) time, we can construct a table
H with entries H[u,S] for each u∈R∪X,S∈Y , such that
H[u,S]=c∗

u(S) for each choice of u and S.

Proof . We calculate the entries of H in a bottom-up order.
That is, we only calculate entries of the form H[u,S] for
some u∈R∪X after we have calculated all entries of the
form H[v,S′] for each descendant v of u in R∪X.

If u is a leaf of N, then u∈X, and following Claim 11, we
may set H[u,S]=0 if S=�(u), and H[u,S]=∞ otherwise.

If u∈R, we may assume that we already know the
functions c∗

v for v∈L(
(�)), as we have calculated H[v,S]
for each S∈Y . Then we can apply Lemma 9 on the
network N[
(�)] to calculate, in O(�l+2 ·|
(u)|) time, a
table I such that I[S] gives the minimum value of w(f)+∑

x∈X c∗
x(f (x)) over all lineage functions f on N[
(u)] with

f (u)=S, for each S∈Y . By Claim 12, this is exactly c∗
u(S).

Then we may set H[u,S]= I[S].
Thus, the construction of each individual entry H[u,S]

takes O(�l+2 ·|
(u)|) time. In total, the construction of H
therefore takes O(�l+2|Y|∑i∈[r] |
(u)|)=O(�l+3|V(N)|)
time.

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article/67/3/518/4767820 by Bibliotheek TU

 D
elft user on 03 D

ecem
ber 2021

[17:32 12/4/2018 Sysbio-OP-SYSB170096.tex] Page: 538 518–543

538 SYSTEMATIC BIOLOGY VOL. 67

Once the table H has been constructed, then by
Claim 10 we can find minf ∈F (V(N))w(f) by calculating
minS∈Y H[�N,S], in time O(|Y|. Thus, the total time
to find a minimum weight �-consistent lineage
function on N is O(�l+3|V(N)|+|Y|)=O(�l+3|V(N)|)=
O(2p(l+3)|V(N)|).

Modeling ILS—Missing Proofs
The purpose of this section is to prove Lemma 3.
We first show that the minimum total ILS weight

of a rooted �-consistent lineage function f on N is
at most the combined ILS score of (N,�). Consider
a gene tree T and coalescent history h :V(T)∪E(T)→
V(N)∪Path(N) for which A·PShw(T,�)+B·XLT,h(N) is
minimized. Furthermore, let � :V(T)→[p] be a character
extending � for which

∑
xy∈E(T)c�(xy)=PShw(T,�).

We first note that we may make the following
assumptions about T,h,�:

• h(�T)=�N . (Indeed, if T instead has a root r with
h(r) �=�N , we may simply add �T as the new root
with child r, set h(�T)=�N , �(�T)=�(r), and let
h(�Tr) be any path in N from �N to h(r). This does
not increase the combined ILS score.)

• The path h(e) has length at most 1 for any edge
e∈E(T); in particular, an edge xy∈E(T) passes
through uv∈E(N) if and only if h(x)=u,h(y)=
v. (Indeed, if a path h(xy) is of the form h(x)=
u0,u1,...ul =h(y), l>1, then we may subdivide the
edge xy with a series of nodes x1,...xl−1, letting
x0 =x,xl =y, and then set g(xi)=ui, h(xi−1xi)=
ui−1ui for each i∈[l], and �(xi)=�(y) for each i∈
[l−1].)

• For all nonleaf x∈V(T), there is a child y of x for
which �(x)=�(y). (Indeed, if this is not the case
for some x, then we may choose a child y of x
arbitrarily and set �(x) to be �(y) without affecting
the combined ILS score.)

Given the above, we may define the lineage function
f :V(N)→P([p]) as follows: f (v)={�(x) :h(x)=v} for all
x∈V(T). We note that as h(�T)=�N , f is rooted. We note
that for any l∈X, �(x)= l for any x such that h(x)= l (using
the fact that x is either the leaf l in T or has a child y such
that �(x)=�(y), and such a y also has h(y)= l). It follows
that f is �-consistent.

We now show that wf ≤ ILS(N,�).
First consider the root �N of N. We claim that

max(|f (�N)|−1,0)≤∑
xy∈E(T),h(y)=�N

c�(xy). Indeed, let
i=�(�T). Then i∈ f (�N), and for any j∈ f (�N)\{i}, there
exists an edge xy∈E(T) such that h(y)=�N,�(y)= j
and �(x) �= j, and hence c�(xy)=1. As this y must be
different for each j, we have that |f (�N)|−1=|f (�N)\
{i}|≤∑

xy∈E(T),h(y)=�N
c�(xy), as required.

Now consider a nonroot node v∈V(N), and construct
the set {Su :u∈par(v)} as follows: for each parent u of

v, set Su ={�(y) :xy∈E(T) passes through uv and �(x)=
�(y)}. Observe that Su ⊆ f (v)∩f (u).

We make two claims about {Su :u∈par(v)}. Firstly,
we claim that for each u∈par(v), max(|Su|−1,0)≤
XLT,h(uv). Indeed, if |Su|≤1 then there is nothing to
prove. Otherwise, by construction of Su there are at least
|Su| edges passing through uv and therefore XLT,h(uv)≥
|Su|−1. This proves the first claim.

Our second claim is that |f (v)\(
⋃

u∈par(v)Su)|≤∑
xy∈E(T),h(y)=vc�(xy). Indeed, for each i∈ f (v)\

(
⋃

u∈par(v)Su), there must exist y∈V(T) such that
h(y)=v and �(y)= i. Choosing the highest such y and
letting x be its parent, we note that if h(x)=v then by
definition �(x) �= i and so c�(xy)=1. If h(x) �=v, then it
must be that h(x)=u for some parent u of v. But in this
case xy passes through uv, and so if �(x)= i then i∈Su,
a contradiction. Thus in either case, we have c�(xy)=1
for some y such that h(y)=v and �(y)= i. As this y must
be different for each i∈ f (v)\(

⋃
u∈par(v)Su), we have

|f (v)\(
⋃

u∈par(v)Su)|≤∑
xy∈E(T),h(y)=vc�(xy), as claimed.

To put everything together, for any nonroot
v∈V(N), we have by construction that if f (v) �=∅
then f (u) �=∅ for some parent u of v. It follows
that for every nonroot node v∈V(N), wf (v)≤
A·|f (v)\(

⋃
u∈par(v)Su)|+B·∑u∈par(v)max(|Su|−1,0)≤

A·∑xy∈E(T),h(y)=vc�(xy)+B·∑u∈par(v)XLT,h(uv), where
{Su :u∈par(v)} is constructed as above. On the other
hand, if v=�N then wf (v)=A·max(|f (v)|−1,0)≤
A·∑xy∈E(T),h(y)=�N

c�(xy).
Therefore, we have

wf =
∑

v∈V(N)

wf (v)

≤ A·
∑

xy∈E(T),h(y)=�N

c�(xy)

+
∑

v∈V(N)\�N

A·
∑

xy∈E(T),h(y)=v

c�(xy)

+
∑

v∈V(N)\�N

B·
∑

u∈par(v)

XLT,h(uv)

=A·
∑

xy∈E(T)

c�(xy)+B·
∑

uv∈E(N)

XLT,h(uv)

=A·PShw(T,�)+B·XLT,h(N)

= ILS(N,�).

This concludes the proof that the minimum total ILS
weight of a rooted �-consistent lineage function f on N
is at most the combined ILS score of (N,�). We now
show that the combined ILS score of (N,�) is at most
the minimum total ILS weight of a rooted �-consistent
lineage function f on N.

Let f be a rooted �-consistent lineage function on N
with minimum total ILS weight, and assume without
loss of generality that wf <∞. We construct a gene tree T,

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article/67/3/518/4767820 by Bibliotheek TU

 D
elft user on 03 D

ecem
ber 2021

[17:32 12/4/2018 Sysbio-OP-SYSB170096.tex] Page: 539 518–543

2018 VAN IERSEL ET AL.—PARSIMONY ON NETWORKS 539

coalescent history h :V(T)∪E(T)→V(N)∪Path(N) and
character � :V(T)→[p] as follows.

For each v∈V(N) and i∈ f (v), add a node xv,i to V(T)
with h(xv,i)=v and �(xv,i)= i. To add the remaining
nodes and edges to the tree T under construction, we
will process each nonroot node of N one at a time.

First consider v=�N . If |f (v)|=1, then we add no
edges or nodes and the unique node x�N ,i will be
the root of T. Otherwise, we “add to T” a random
binary tree T′ whose leaves are the nodes x�N ,i for
each i∈ f (�N). For each internal node x of this tree
(including the root), set h(x)=�N and �(x)= j for
the minimum j∈ f (v). Observe that

∑
xy∈E(T′){c�(xy) :

h(y)=�N}=max(|f (�N)|−1,0). As �N has no parents
in N, it follows that A·∑xy∈E(T′){c�(xy) :h(y)=�N}+B·∑

u∈par(�N)XLT,h(u�N)=A·max(|f (�N)|−1,0)=wf (�N).
Now for a nonroot node v in N with f (v) �=∅, let {Su :

u∈par(v)} be the set such that S(u)⊆ f (v)∩f (u) for all u∈
par(v), minimizing

A·|f (v)\
⎛
⎝ ⋃

u∈par(v)

Su

⎞
⎠|+B·

∑
u∈par(v)

max(|Su|−1,0).

If Su =∅ for all u∈par(v) (which only happens if
f (v)∩f (u)=∅ for all u∈par(v)), then choose an arbitrary
u∈par(v) for which f (u) �=∅ (which must exist as
wf <∞). Choose an arbitrary i∈ f (u). Now add a tree
T′ whose root (of out-degree 1) is xu,i and whose
leaves are all nodes of the form xv,j for j∈ f (v), with
all internal nodes x having �(x)= j for the minimum
j∈ f (v). For the edge e between xu,i and its child, set
h(e)=uv, and for all other edges e in this tree let h(e)
be the trival path consisting of v. Observe that in this
case

∑
xy∈E(T′){c�(xy) :h(y)=v}=|f (v)|, and XLT,h(uv)=0

for all u∈par(v). It follows that A·∑xy∈E(T′){c�(xy) :
h(y)=v}+B·∑u∈par(v)XLT,h(uv)=A·|f (v)|=A·|f (v)\
(
⋃

u∈par(v)Su)|+B·∑u∈par(v)max(|Su|−1,0)=wf (v).
So now suppose that Su �=∅ for some u∈par(v). Then,

do the following for all Su �=∅, u∈par(v).
Choose an arbitrary i∈ f (u)∩(

⋃
u∈par(v)Su), and an

arbitrary u∈par(v) such that i∈ f (u). Then add a tree T′
whose root (of out-degree 1) is xu,i and whose leaves
are xv,i together with all nodes of the form xv,j for
j∈ f (v)\(

⋃
u∈par(v)Su). Set h(x)=v and �(x)= i for each

internal node x of this tree. For the edge e between xu,i
and its child, set h(e)=uv, and for all other edges e in this
tree let h(e) be the trival path consisting of v. For the
remaining i′ ∈ f (u)∩(

⋃
u∈par(v)Su), choose an arbitrary

u∈par(v) such that i′ ∈ f (u). Add an edge e between xu,i′
and xv,i′ , setting h(e)=uv.

Observe that in this case
∑

xy∈E(T′){c�(xy) :h(y)=
v}=|f (v)\(

⋃
u∈par(v)Su)|, and that XLT,h(uv)=

max(|Su|−1,0) for all u∈par(v) (as there are exactly
|Su| edges passing through uv). It follows that
A·∑xy∈E(T′){c�(xy) :h(y)=v}+B·∑u∈par(v)XLT,h(uv)=

A·|f (v)\(
⋃

u∈par(v)Su)|+B·∑u∈par(v)max(|Su|−1,0)=
wf (v).

It follows that

ILS(N,�)=A·PShw(T,�)+B·XLT,h(N)

=A·
∑

xy∈E(T)

c�(xy)+B·
∑

uv∈E(N)

XLT,h(uv)

=
∑

v∈V(N)

(A·
∑

{c�(xy) :h(y)=v}

+B·
∑

u∈par(v)

XLT,h(uv))

=
∑

v∈V(N)

wf (v)=wf .

This completes the proof that the combined ILS score
of (N,�) is at most the minimum total ILS weight of a
rooted �-consistent lineage function f on N.

Example
Consider the network N in Figure 4, and suppose

we are given a character � on the leaf set of N such
that �(v5)={1},�(v7)={1},�(v8)={2},�(v9)={2}. We will
show how to apply the algorithm of “Fixed-Parameter
Tractability with respect to reticulation number” section
on the example (N,�). We follow the pseudocode in
Algorithm 1.

As � assigns all leaves one of two values, we have that
p=2, and therefore set Y =P([2])\{∅}={{1},{2},{1,2}}.

There is only one reticulation node in N, the node v3.
Thus P consists of one parent of v3. Arbitrarily, let us say
P={v4}.

Now consider the forest F derived from N by deleting
all out-edges of P. Then F contains two trees, denoted
T1,T2. T1 consists of the nodes v1,v2,v3,v4,v5,v6,v7,v8
and the edges e2,e3,e4,e5,e6,e7,e8. T2 consists of the
single node v9. Thus we have �1 =v1,�2 =v9.

Now we guess a lineage assignment f ′ on P. There
are three possibilities: f ′(v4)={1}, f ′(v4)={2}, or f ′(v4)=
{1,2}. We will now handle the case where f ′(v4)={1} in
detail (other cases will be handled in a similar way).

We process each tree in F separately, beginning with
T1. We will calculate �(u,S) for each u∈V(T1) and S∈S,
processing the nodes of V(T1) in a reverse topological
order. Recall that �(u,S) calculates the minimum cost of
a lineage function f that assigns f (u)=S, where the cost
is added up over all descendants in T1 of u not including
u itself. The reason for this is that we cannot calculate
the cost on u until we also know the assignment on the
parents of u. Moreover, the function f is required to be
an extension of � and f ′. We will record the values �(u,S)
in Figure A2.

For each of the leaves u in {v4,v5,v7,v8}, it easy
to calculate �(u,S) - the assignment on u is already
determined (either by f ′ in the case of v4, or by � in the

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article/67/3/518/4767820 by Bibliotheek TU

 D
elft user on 03 D

ecem
ber 2021

[17:32 12/4/2018 Sysbio-OP-SYSB170096.tex] Page: 540 518–543

540 SYSTEMATIC BIOLOGY VOL. 67

v4 0 ∞ ∞
v5 0 ∞ ∞
v7 0 ∞ ∞
v8 ∞ 0 ∞
v6 1 1 0
v3 1 1 0
v2 1 1 0
v1 1 1 0

B(v1,S) +�(v1,S) 1 1 0

v9 ∞ 0 ∞
B(v9,S) +�(v9,S) ∞ 1 ∞

FIGURE A2. Values constructed during the example application
of the algorithm to the network in Figure 4 with character � such that
�(v5)=�(v7)=1,�(v8)=�(v9)=2, for the case f ′(v4)={1}. The last row
in each table gives the values B(�i,S) +H[�i,S] for each tree root �i and
S∈Y ; the minimum of these (in bold) is the optimal score over tree
Ti. Each other row represents the values H[v,S] for each v∈V(N) and
S∈Y . Note that v1 may not be assigned the value {1,2}.

case of v5,v7,v8). Thus we may simply set �(u,S)=0 if S
is the required value, and ∞ otherwise.

The node v6 is simple to process, as we already know
the optimal assignment to each of its children, regardless
of the assignment to v6—as discussed above, we must
have f (v7)={1} and f (v8)={2}. It follows that if f (v6)={1}
or f (v6)={2}, then the cost imposed will be 1 on one of
its children, and 0 on the other, for a total of 1. On the
other hand, if f (v6)={1,2} then each of its children will
have an imposed cost of 0. thus we may set �(v6,{1})=
�(v6,{2})=1 and �(v6,{1,2})=0.

The node v3 has v6 as its only child and v6 has no
other parents, so to determine �(v3,S) it is enough to
consider the values �(v6,S′) for each S′ ∈Y together with
the cost imposed on v6 by assigning S to v3 and S′ to v6.
If f (v3)={1}, then by assigning f (v6)={1} we would get
a cost of 0 on v6 and (referring to �(v6,{1})) a cost of 1 on
the descendants of v6, for a total of 1; f (v6)={2} would
impose a total cost of 2 (1 on v6, and 1 on its descendants);
on the other hand setting f (v6)={1,2} would impose a
cost of 0 on the descendants on v6 but ∞ on v6 itself
(as we would have |f (v6)|> |f (v3)|). Thus we get that the
optimum cost is 1 if f (v3)={1}, and set �(v3,{1})=1. By
similar arguments we get �(v3,{2})=1, but �(v3,{1,2})=
0 (in the last case, the optimum assignment assigns
f (v6)={1,2} as well).

The node v2 is the most complicated one to process,
as its child v3 has a parent in N other than v2, namely
the node v4. However, as v4 ∈P we already know that
v4 must be assigned the value {1}. Thus, if f (v2)={1}
the optimal cost imposed on v3 and its descendants
will be 1—either by setting f (v3)={1} for a cost of 0 on
v3 and 1 on its descendants, or by setting f (v3)={1,2}
for a cost of 1 on v3 (as |f (v3)\(f (v2)∪f (v4))|=1) and 0
on its descendants. On the other hand, if f (v2)={2} or
f (v2)={1,2} then we can set f (v3)={1,2} for a total cost
of 0 on v3 and its descendants. Turning now to the child

v5, we have that v5 must be assigned the value {1} due
to �, and that therefore the cost imposed on v5 is 0 if
f (v2)={1}, 1 if f (v2)={2}, and 0 if f (v2)={1,2}. Adding
these values together, we have that the optimal cost on
the descendants of v2 is 1 if f (v2)={1}, 1 if f (v2)={2}, and
0 if f (v2)={1,2}, and we may set �(v2,S) accordingly.

Finally, the node v1 has two children v2 and v4, each
of which has no other parents. We can observe that if
f (v1)={1}, the optimal cost on v2 and its descendants is 1
(setting f (v2)=1). If f (v1)={2}, the optimal cost on v2 and
its descendants is also 1, and if f (v1)={1,2}, the optimal
cost on v2 and its descendants is 0. The optimal cost on
v4 is 0 if f (v1)={1}, 1 if f (v1)={2}, and 0 if f (v1)={1,2}.
Adding these together, we get �(v1,{1})=1,�(v1,{2})=
1,�(v1,{1,2})=0.

Now that we have processed T1, we can see that
the optimal assignment is one that assigns f (v1)={1,2}.
However, we are not allowed to assign v1 this value, as it
is the root of the network and therefore must be assigned
a value S with |S|=1. Thus the optimal assignment may
assign either f (v1)={1} or f (v1)={2}, both for a cost on
T1 of 1.

We still need to process T2. However, this case is much
easier as there is only one node, v9. As v9 is a leaf of
the network, we already know the value that must be
assigned to it, namely {2}. thus �(v9,{1})=∞,�(v9,{2})=
0,�(v9,{1,2})=∞. Our processing of T2 is not complete,
however, as we also need to count the costs imposed on v9
by the fact that its parent v4 has assigned value {1}. This
imposes an additional cost of 1 on v9 (as |f (v9)\f (v4)|=1),
and so the total cost on T2 is 1.

Thus, the total cost when f ′(v4)={1} is 1+1=2.
In Figures A3 and A4, we process the costs with

respect to the other values of f ′, that is when f ′(v4)={2}
or f ′(v4)={1,2}. We see that for f ′(v4)={1,2} the total
cost is ∞, as the only noninfinite costs are returned
when f (v1)={1,2}, which is not allowed. The infinite
cost essentially comes from the fact that we cannot have
|f (v4)|=2 when |f (v1)| must be 1 and v1 is the only
parent in N of v4. For the case f ′(v4)={2}, however,
we have a total cost of 1. (Such a cost occurs, for
example, when f (v1)= f (v2)= f (v5)= f (v7)={1},f (v4)=

v4 ∞ 0 ∞
v5 0 ∞ ∞
v7 0 ∞ ∞
v8 ∞ 0 ∞
v6 1 1 0
v3 1 1 0
v2 0 2 0
v1 1 1 0

B(v1,S) +�(v1,S) 1 1 0

v9 ∞ 0 ∞
B(v9,S) +�(v9,S) ∞ 0 ∞

FIGURE A3. Same as Figure A2 but for f ′(v4)={2}.

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article/67/3/518/4767820 by Bibliotheek TU

 D
elft user on 03 D

ecem
ber 2021

[17:32 12/4/2018 Sysbio-OP-SYSB170096.tex] Page: 541 518–543

2018 VAN IERSEL ET AL.—PARSIMONY ON NETWORKS 541

v4 ∞ ∞ 0
v5 0 ∞ ∞
v7 0 ∞ ∞
v8 ∞ 0 ∞
v6 1 1 0
v3 1 1 0
v2 0 1 0
v1 ∞ ∞ 0

B(v1,S) +�(v1,S) ∞ ∞ 0

v9 ∞ 0 ∞
B(v9,S) +�(v9,S) ∞ 0 ∞

FIGURE A4. Same as Figure A2 but for f ′(v4)={1,2}.

f (v8)= f (v9)={2}, and f (v3)= f (v6)={1,2}). Since this is
the minimum total cost over all partial assignments f ′,
we get that the parental parsimony score of (N,�) is 1.

REFERENCES

Abbott R., Albach D., Ansell S., Arntzen J.W., Baird S.J., Bierne N.,
Boughman J., Brelsford A., Buerkle C.A., Buggs R., Butlin R.K.,
Dieckmann U., Eroukhmanoff F., Grill A., Cahan S.H., Hermansen
J.S., Hewitt G., Hudson A.G., Jiggins C., Jones J., Keller B.,
Marczewski T., Mallet J., Martinez-Rodriguez P., Möst M., Mullen
S., Nichols R., Nolte A.W., Parisod C., Pfennig K., Rice A.M., Ritchie
M.G., Seifert B., Smadja C.M., Stelkens R., Szymura J.M., Väinölä R.,
Wolf J.B., Zinner D. 2013. Hybridization and speciation. Journal of
Evolutionary Biology 26:229–246.

Alimonti P., Kann V. 1997. Hardness of approximating problems
on cubic graphs. In: Giancarlo Bongiovanni, Daniel Pierre Bovet,
and Giuseppe Di Battista, editors. Algorithms and Complexity:
Third Italian Conference, CIAC ’97 Rome, Italy, March 12–14,
1997 Proceedings. Berlin, Heidelberg: Springer Berlin Heidelberg.
288–298.

Boto L. 2010. Horizontal gene transfer in evolution: facts and challenges.
Proceedings of the Royal Society of London B: Biological Sciences
277:819–827.

Bryant D., Bouckaert R., Felsenstein J., Rosenberg N.A.,
RoyChoudhury, A. 2012. Inferring species trees directly from
biallelic genetic markers: bypassing gene trees in a full coalescent
analysis. Molecular Biology and Evolution 29:1917–1932.

Cardona G., Pons J.C., Rosselló, F. 2015. A reconstruction problem
for a class of phylogenetic networks with lateral gene transfers.
Algorithms for Molecular Biology 10:28.

Chan Y.-B., Ranwez V., Scornavacca C. 2017. Inferring incomplete
lineage sorting, duplications, transfers and losses with
reconciliations. Journal of Theoretical Biology 432:1–13.

Day W.H., Johnson D.S., Sankoff D. 1986. The computational
complexity of inferring rooted phylogenies by parsimony.
Mathematical Biosciences 81:33–42.

Degnan J.H., Rosenberg N.A. 2009. Gene tree discordance,
phylogenetic inference and the multispecies coalescent. Trends in
Ecology & Evolution 24:332–340.

Doolittle W.F. 1999. Phylogenetic classification and the universal tree.
Science 284:2124–2128.

Downey R.G., Fellows M.R. 2012. Parameterized complexity. New York,
USA: Springer Science & Business Media.

Felsenstein J. 1978. Cases in which parsimony or compatibility methods
will be positively misleading. Systematic Zoology 27:401–410.

Fischer M., Van Iersel L., Kelk S., Scornavacca C. 2015. On computing
the maximum parsimony score of a phylogenetic network. SIAM
Journal on Discrete Mathematics 29:559–585.

Fitch W.M. 1971. Toward defining the course of evolution: minimum
change for a specific tree topology. Systematic Biology 20:406–416.

Flum J., Grohe M. 2006. Parameterized complexity theory. (Texts in
theoretical computer science. An EATCS series, vol. xiv). Oxford,
UK: Oxford University Press.

Gramm J., Nickelsen A., Tantau T. 2008. Fixed-parameter algorithms
in phylogenetics. The Computer Journal 51:79–101.

Gusfield D. 2014. ReCombinatorics: the algorithmics of ancestral
recombination graphs and explicit phylogenetic networks.
Cambridge, USA: MIT Press.

Hein J. 1990. Reconstructing evolution of sequences subject to
recombination using parsimony. Mathematical Biosciences 98:185–
200.

Hein J. 1993. A heuristic method to reconstruct the history of sequences
subject to recombination. Journal of Molecular Evolution 36:396–
405.

Huber K., Moulton V. 2006. Phylogenetic networks from multi-labelled
trees. Journal of Mathematical Biology 52:613–632.

Huber K.T., Moulton V., Steel M., Wu T. 2016. Folding and unfolding
phylogenetic trees and networks. Journal of Mathematical Biology
73:1761–1780.

Huson D.H., Rupp R., Scornavacca C. 2010. Phylogenetic networks:
concepts, algorithms and applications. Cambridge, UK: Cambridge
University Press.

Jin G., Nakhleh L., Snir S., Tuller T. 2006. Maximum likelihood of
phylogenetic networks. Bioinformatics 22:2604–2611.

Jin G., Nakhleh L., Snir S., Tuller T. 2007. Efficient parsimony-based
methods for phylogenetic network reconstruction. Bioinformatics
23:e123–e128.

Kannan L., Wheeler W.C. 2012. Maximum parsimony on phylogenetic
networks. Algorithms for Molecular Biology 7:9.

Liu L., Yu L., Edwards S.V. 2010. A maximum pseudo-likelihood
approach for estimating species trees under the coalescent model.
BMC Evolutionary Biology 10:302.

Maddison W.P. 1997. Gene trees in species trees. Systematic Biology
46:523–536.

Mallet J. 2007. Hybrid speciation. Nature 446:279.
Morrison D. 2011. Introduction to phylogenetic networks. Uppsala,

Sweden: RJR Productions.
Nguyen C.T., Nguyen N.B., Sung W.-K., Zhang L. 2007. Reconstructing

recombination network from sequence data: the small parsimony
problem. IEEE/ACM Transactions on Computational Biology and
Bioinformatics (TCBB) 4:394–402.

Nguyen Q., Roos T. 2015. Likelihood-based inference of phylogenetic
networks from sequence data by phylodag. International
Conference on Algorithms for Computational Biology. New
York, USA: Springer. pp. 126–140.

Niedermeier R. 2006. Invitation to fixed-parameter algorithms. Oxford,
UK: Oxford University Press. (Oxford lecture series in mathematics
and its applications, vol. 31).

Pickrell J.K., Pritchard J.K. 2012. Inference of population splits and
mixtures from genome-wide allele frequency data. PLoS Genetics
8:e1002967.

Posada D., Crandall K.A., Holmes E.C. 2002. Recombination in
evolutionary genomics. Annual Review of Genetics 36:75–97.

RoyChoudhury A., Felsenstein J., Thompson E.A. 2008. A two-stage
pruning algorithm for likelihood computation for a population tree.
Genetics 180:1095–1105.

Scornavacca C., Galtier N. 2017. Incomplete lineage sorting in
mammalian phylogenomics. Systematic Biology 66:112–120.

Solís-Lemus C., Ané, C. 2016. Inferring phylogenetic networks with
maximum pseudolikelihood under incomplete lineage sorting.
PLoS Genetics 12:e1005896.

Vuilleumier S., Bonhoeffer S. 2015. Contribution of recombination to
the evolutionary history of HIV. Current Opinion in HIV and AIDS
10:84–89.

Wu Y.-C., Rasmussen M.D., Bansal M.S., Kellis M. 2014. Most
parsimonious reconciliation in the presence of gene duplication,
loss, and deep coalescence using labeled coalescent trees. Genome
Research 24:475–486.

Yu Y., Barnett R.M., Nakhleh L. 2013a. Parsimonious inference
of hybridization in the presence of incomplete lineage sorting.
Systematic Biology 62:738–751.

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article/67/3/518/4767820 by Bibliotheek TU

 D
elft user on 03 D

ecem
ber 2021

[17:32 12/4/2018 Sysbio-OP-SYSB170096.tex] Page: 542 518–543

542 SYSTEMATIC BIOLOGY VOL. 67

Yu Y., Ristic N., Nakhleh L. 2013b. Fast algorithms and heuristics for
phylogenomics under ILS and hybridization. BMC Bioinformatics
14:S6.

Zhaxybayeva O., Doolittle W.F. 2011. Lateral gene transfer. Current
Biology 21:R242–R246.

Zhu J., Yu Y., Nakhleh L. 2016. In the light of deep coalescence: revisiting
trees within networks. BMC Bioinformatics 17:271.

Zhu S., Degnan J.H. 2016. Displayed trees do not determine
distinguishability under the network multispecies coalescent.
Systematic Biology 66:283–298.

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article/67/3/518/4767820 by Bibliotheek TU

 D
elft user on 03 D

ecem
ber 2021

	blackImproved Maximum Parsimony Models for Phylogenetic Networks

