| Stonecyclin | | | | | | | |-------------|--|--|--|--|--|--| | | ECOR | Paper Waste
Brick | Bagasse Particle
Board | Newspaper
Wood | Bitublock | Fly Ash
Cement | Self-Healing
Concrete | Clay & Slag
Brick | Stonecycling
Brick | |--|---|--|---|---|--|---|---|--|---| | Developed by | Noble Environmental
Technologies | Spain's University of
Jaen | Universities of India | Vij5 and Mieke Meijer | Dr. John Forth | UNKN | Bacterial Mineral Precipi-
tation, TUDelft | TNO, Delft | Tom van Soest | | Waste Origin | cardboard, newspaper, office paper, discarded wood chips, residual agricultural fibers in- cluding Bovine Pro- cessed Fiber (BPF), kenaf, oat, coffee, co- conut, and other waste fibers | paper waste and
by-products of the pa-
per industry and waste
water purification | sugar mills by-product | newspapers | recycled glass, incinerated sewage sludge ash (ISSA), quarry fines, MSW Incinerator bottom ash (MSWI BA), construction and demolition waste and other recycled aggregate | fine powder which is a byproduct from burning pulverized coal in electric generation power plants, a residue left at the end of the coal combustion process | construction market
and micro-organisms
laboratory development | clay material and slag
deriving from the fer-
ronickel production in-
dustry | demolition sites | | Composition | 100% Bio-based ma-
terial converted from
waste cellulose fiber,
pressure, and heat | paper waste and waste
from water purification,
mixed in a ceramic
blend(clay) and pres-
surized | bagasse fiber residual pulp from sugarcane | Newspaper and a type of adhesive (UNKN) | mix of coarse, fine and filler particles, ratios dependent on the feedstock material and desired product properties | fly ash and Blast Fur-
nace Slag (BFS) mixed
with lime and water it
forms a compound sim-
ilar to Portland cement | concrete in addition to microfibers and calcium carbonate precipitating micro-organisms | geopolymers from me-
takaolin, slag, NaOH
and waterglass | pulverized recycled
building materials (not
provided composition) | | Application | interior, furnishings,
signage, displays,
packaging, consumer
products, artwork, stor-
age, shelving etc. | conventional building construction | core material for lami-
nated floors, replacing
high-density and ex-
pensive wood fiber-
board | panelling, furniture and interior equipment | load and non-load bearing construction units such as concrete and clay based building blocks | loadbearing
construction and all
building purposes | ideal for sewer, under-
ground retainers for
hazardous waste etc.
building purposes | loadbearing
construction and all
building purposes | both interior and ex-
terior applications on
building construction | | Waste Comp. Availab. | | | | | | | | | | | % Waste Composite | | | | | | | | | | | Manufact. Facility | | | | | | | | | | | Structural Efficiency | | | • 0 0 0 0 | | | | | | | | Thermal Insulation | | | | | | | | | | | Acoustic Insulation | | | | | | | | | | | Fire Resistance | | | | | | | | | | | Waterproof Efficiency | | | | | | | | | | | Cost Effective | | | | | | | | | | | Optimiz. Potential | UNKN | optimized through alter-
native, green products
as sewage sludge, brew-
ing by-products, olive,
producing biodiesel etc. | mix with pMDI resin as a bonding agent and wax as dimensional stabilizer for laminated floor and furniture applications | UNKN | possible future changes due to product quality protocols may make current potential waste inputs more attractive | optimum amount of fly ash varies not only with application, but also with composition and proportions in the mixture | development of capsules with properties to survive the mixing process and release the healing agent | concerning durability description accelerated tests are required to esti- mate the material behav- iour in its lifecycle | UNKN | | Additional
Estimation
of the Product | + no toxic adhesives, additives, formaldehyde, or other sources of off-gassing + bonds well with virtually any adhesive, coating, treatment, laminate or veneers + 75% lighter than conventional panels | + requires less time of baking than conventional bricks - poor in mechanical strength - adhesion and forming difficulties following the production procedure | + manufacturing process on a commercial scale + substitute for wood + lightweight | + resemble the aesthetics of real wood | + low carbon footprint and high recycled content generate price advantages + the adaptable process conditions appears highly suited to a wide range of wastes and the more inconsistent nature of waste characteristics - Heavy metals may be present in some of the aggregate wastes. | + contains various heavy metals and toxic elements which are usually allowed to disperse in the atmosphere or is dumped in a landfill - Fly ash is a pozzolanic material, expensive replacement for Portland cement | + self-repairs cracks in concrete structures + substantial savings, especially in steel reinforced concrete | + utilizes by-products + low condensation in CO ₂ - early stage of research - cost related uncertainty | + meet today's industry requirements and can be used for both the interior and exterior of buildings + produced from various types of waste, and combined in different ways to create new colours, textures, shapes and sizes | | | THE LANGE OF THE PARTY P | | | | | | | | | |--|--|---|---|---|--|--|---|---|---| | | Saw Dust & Rice
Husk Building Brick | Rice Husk Ash
Concrete (RHA) | Fungi-brick | Recycled Glass
Brick | Replast Brick | Beverage Carton
Brick | Polli-Brick | 'Pretty Plastic'
Tile | Plastic Bag
Brick | | Developed by | UNKN | India | Mycologist Philip Ross | Japan's GRC, Beecycle,
Kingston | Byfusion | ReWall | Miniwiz | Materia | Carter Zufelt, Wasted | | Waste Origin | fine powder which is a byproduct from burning pulverized coal in electric generation power plants, a residue left at the end of the coal combustion process | by-product of burning
the outer shell of the
paddy that comes out
as a waste product dur-
ing milling of rice | corn stalks, hemp, and mycelium grow into solid objects in about five days with no added energy (can be com- posted at the end of the installation) | hydro-thermally so-
lidified materials from
breaking down glass
waste into sand grade | all kinds of plastic from
landfills and recycling
facilities | beverage carton pack-
ages from landfills | plastic bottles from
landfills and recycling
facilities | locals who separate their waste, through WASTED and through visitors, who can bring plastic instead of a tick- et when entering Fab- City | milk containers, tup-
perware, oil/shampoo/
detergent bottles, and
mainly plastic bags | | Composition | cast from fluorogypsum
binder/plaster using
saw dust, rice husk and
exfoliated vermiculite | rice ash as admixture
for concrete | chopped-up corn
stalks, hemp, and my-
celium | 30-70% pozzotive
glass replacing sand as
admixture to cement | mix of shreded unsort-
ed plastics | shreded and pressed
material of 100% ben-
erage cartons (paper,
polyethylene and alu-
minum) | mechanically recycled
plastic of type PET
from drinking bottles | sorted, washed, grind-
ed and moulded re-
cycled plastic of type
PET, HDPE and PE | plastic bags of type
HDPE | | Application | bricks, flooring tiles and plastering | special concrete mix-
es, high performance
concrete, high strength,
low permeability con-
crete | interior and exterior
application on building
construction | bricks, tile blocks, floor
materials, outdoor fur-
niture | interior and exterior
application on building
construction | initially intended for in-
terior clading, but also
various exterior appli-
cations | panelling, interior and exterior application on building construction | panelling slates and
tiles, interior and exteri-
or application | brick for interior and ex-
terior application | | Waste Comp. Availab. | | | | | | | | | | | % Waste Composite | | | | | | | | 0000 | | | Manufact. Facility | | | | | | | | | | | Structural Efficiency | | | | | | | | | | | Thermal Insulation | | | | | | | | | | | Acoustic Insulation | | | | | | | | | | | Fire Resistance | | | | | | | | | | | Waterproof Efficiency | | | | | | | | | | | Cost Effective | | | | | | | | | | | Optimiz. Potential | further studies on fire resistance and standard-ization, also addition of waste lime sludge may add economy | study on applications of
RHA as repair mortars,
coatings and soil stabili-
zation | dial in different material properties of the bricks by changing variables, tune the material for permanent structures | integral pigment can be applied to the mix to further enhance the brick, by offering more design possibilities | improvement of prod-
uct's production method
and appearance for pro-
motion reasons | UNKN | UNKN | UNKN | further ways of interlock-
ing process and mould-
ing shapes in regard to
the need of assembly | | Additional
Estimation
of the Product | + lightweght + FG binder is cheaper than the lime and ce- ment binders | + carbon neutral green product + reduces the consumption of cement due to blending + considered a class apart from all other mineral admixtures due to its unique microstructure and the resultant benefits in concrete and its multi various application possibilities | + 100% organic and compostable + stronger, pound for pound, than concrete + super-strong, water-, mold- and fire-resistant + grown and formed into just about any shape | + artificial super-light aggregate + approximately 95% of coal Btu energy equivalent is saved + endless aesthetic possibilities | + requires no adhesives + LEED certification + 95% lower greenhouse emissions (GHG) com- pared to concrete block + flexibility in shape - in some cases need additional support - appearance | + no additional adhesives | + the 3D strong self-in- terlocking structure with- out chemical adhesives + translucent + 1/5 of standard curtain wall systems + lightweight + UV protection + scratch-resistant and easy to clean - process economically efficient in mass manu- factured on-site | + chemical resistant + lightweight + scratch resistance - moderate UV resistance - not renewable | + HDPE has a high strength-to-density ratio, is widely accessible, and can be found in an abundance of colors + very simple production process - not yet applied and tested in building constructuion | ## Digital Fabrication Technologies Overview & Evaluation ### Modular Structural System Principle 6x6m² Workunits Spatial Development Potentials Variable Size Workunits Spatial Development Potentials Flexible Shared Space # Timber Joints in x,y,z Directions Study #### Demountable Framework of Salvaged Timber Parameters # Fluctuating Life-cycle Interlocking Ability Variable Types & Quality Robust Joinery Plug-In Modular Function ## Different Interlocking Beam Components Concrete Support of Platforms Concrete Modular System Foundation Detail