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Abstract—Aviation has a negative impact on the envir-
onment. As the number of flights is expected to increase,
the total environmental impact of aviation will continue
to worsen. New solutions are required to mitigate these
effects. Aircraft Trajectory Optimization For Environmental
Impact (TOFEI) can help reduce the impact of aircraft
pollutants while also facilitating an increase in the number
of flights. Whereas previous studies have shown that TOFEI
can be effective in mitigating the footprint of aviation, their
scope is limited. An applicable model should include wind,
variable Mach number and an appropriate environmental
impact metric. This paper presents the Trajectory Optimizer
for Environmental Purposes (TOEP), which bridges the
existing gap. The approach comprises two models, a genetic
algorithm and a direct collocation model. The former finds
climate-optimal trajectories using a meta-heuristic search
technique, while the latter solves the problem using optimal
control in CasADi. As direct collocation provides faster and
more accurate results, the genetic algorithm is used to verify
the direct collocation model. The algorithm uses the open
aircraft performance model OpenAP. Results show that the
environmental impact of flights could be reduced by as
much as 6.6% when fully optimizing for this metric. The
impact differs significantly between short haul flights and
long haul flights, with 1.2% environmental cost reduction
for the former and 2.7% for the latter. Pareto fronts are
utilized to investigate the relationship between operating
cost and the environmental cost.

Nomenclature

Acronyms
CI Cost Index
DC Direct Collocation
EC Environmental Cost
GA Genetic Algorithm
SOC Simple Operating Cost
TOEP Trajectory Optimization for Environ-

mental Purposes
TOFEI Trajectory Optimization For Environ-

mental Impact
Symbols
w Wind vector
Vtas True airspeed
u(t) Control variable vector
x(t) State variable vector
y(t) Discretized variable vector

I. Introduction
The aviation industry is one of the major contributors

to anthropogenic climate change and air quality deterior-
ation. Governments and institutions have started to create
awareness amongst civilians, and incentivise alternatives
to flying. However, flying is expected to remain popular
for the coming years with an average growth of 3.7%
annually [1]. As a result, the International Civil Aviation
Organization predicts that the amount of CO2 produced
by the industry will more than double within twenty years
[2].
CO2, NOx, H2O, CO, SOx and Hydrocarbons (HC) are

all part of the engine exhaust and can also have serious
impact by either contributing to the creation of greenhouse
gasses or by being a greenhouse gas itself. The impact of
aircraft emissions on human health through air quality
deterioration is also non-trivial: the approximate amount
of premature deaths because of air quality deterioration
due to aircraft pollution is 16,000 [3].
To compare the impact different species have, certain

climate metrics have been developed. Radiative forcing
establishes the impact of a species on the balance of
incoming and outgoing energy (W/m2) in the earth
system [4]. The global temperature potential goes one
step further in the cause-effect chain. It is a measure
of the increase in surface temperature due to a pulse
emission, relative to that of CO2. It integrates the effect
of the radiative forcing to obtain the temperature change
on a scale of 10, 20, 50 or 100 years [5]. Some scientists
have taken the leap to evaluate the monetary cost of
emission pollutants. Whereas the cost of environmental
impact does add additional uncertainty to the problem,
the metric is simple to convey to decision makers who do
not have a background in environmental impact studies.
These metrics thus represent an extension from a technical
perspective to a human impact perspective.
To mitigate the negative effects of aircraft pollution,

three general strategies are aircraft design, fleet planning
and aircraft operational planning. The development of
novel aircraft which have a radically different design
can significantly reduce emissions through aerodynamic
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gains and different propulsive concepts [6]. Secondly,
airlines can contribute by fleet planning, where they phase
out more polluting aircraft and purchase cleaner ones.
Research into fleet renewal programs indicates that the
global airline fleet becomes 2% more environmentally
friendly on a yearly basis [7]. Finally, aircraft operations
can be optimized to reduce the climate impact of aviation.
An investigation by Eurocontrol in 2020 [8] found that
inefficiencies in European air traffic management network
results in an additional 9 to 11% fuel burned.
This project focuses on optimizing aircraft operations,

specifically considering Trajectory Optimization For Cli-
mate Impact (TOFEI). The essence of such optimization
is to find trajectories which minimize a particular climate
cost function. Different configurations of green objective
functions are available, ranging from minimizing the fuel
used to minimizing the global warming caused by a flight
[9, 10].

In the past, considerable research has been performed
on TOFEI. Because there is no consensus on how environ-
mental impact can be assessed best, researchers have come
up with a wide range of different approaches to optimize
aircraft trajectories for green purposes. They can generally
be divided into single objective optimization and multiple-
objective optimization. Whereas the former has one global
optimum, the latter yields Pareto optimality, in which a
trade-off can be made between the multiple objective
function values. In Figure 1, an arbitrary Pareto front is
given for the objectives f1 and f2. By decreasing the cost
of f2, the optimal cost of f1 is inherently increased. Such
a front can only be obtained when a conflicting objective
is in place. To the right of the Pareto front are the points
which are not optimal but feasible, while the infeasible
cost combinations lie to the left of the Pareto front. An
example is the study performed by Pervier et al. (2011)
[11]. The researchers developed a model which is able
to optimize for both CO2 emission and time optimality.
The study finds that the most extreme solution for time-
optimality produces up to 10% more CO2 than a fuel-
optimal trajectory.
Visser and Hartjens (2020) [12] perform multi-objective

optimization on a number of different parameters. Using
pre-defined weights, the noise, CO2, time and NOx are
combined into a cost function. The study simplifies the
problem to 2D, assuming the horizontal profile is known
a priori. Whereas this does reduce computational effort, it
will yield local optima as the optimal horizontal trajectory
is assumed or optimized separately.
One of the leading papers in the field of TOFEI with a

single objective is the work presented by Yamashita et al.
(2020) [10]. The researchers developed Airtraf, a model
finding trajectories that minimize temperature change due
to the aircraft emissions. In order to accurately determine
what this temperature response is, the chemistry-climate
model EMAC [13] is used. The researchers find that in
specific conditions the temperature increase can be limited
to 67% compared to a cost-optimal solution for trans-

Figure 1: Basic example of a Pareto front. Points lying on the
black line represent optimal combinations of objective
f1 and f2. Points to the left of the front are infeasible,
while points to the right of the line are suboptimal.

Atlantic flights. Similar objective functions can be observed
in other studies [14, 15, 16], where more modest climate
models are utilized.
Tian et al. [17, 18] take the leap to define the Green

Direct Operating Cost, which combines the direct operat-
ing cost of a trajectory with the monetary cost associated
with aircraft pollutants. The advantage of such a metric is
that it simplifies the impact for policymakers who might
not have a background in environmental sciences. The
researchers use the market value of the European emission
trading scheme to come up with a specific cost per unit
weight emitted for each species. The results of the study
show that of all cost made on a conventional flight, 50%
of it is due to environmental cost.
Although significant research has been performed and

results indicate that TOFEI can help contribute in mit-
igating aviation’s environmental impact, there is a gap
to bridge before the models are sufficiently realistic for
implementation. The limitations comprise unreasonable
assumptions, such as no wind or a constant Mach number
throughout the flight. Whereas these problems have been
tackled individually in different studies, there has not
been a single study with a comprehensive scope. Moreover,
optimization models will mainly see usage by stakeholders
such as airlines, air traffic control and policymakers. These
parties currently have no access to the developed models,
as the tools have not been created for open access.
The aim of this paper is to present an open approach

which takes the next step in TOFEI research by incor-
porating a more realistic scope compared to the status
quo: considering wind, variable Mach number and a
comprehensive environmental impact metric. This serves
the two ultimate goals of this project: to foster research
towards TOFEI and to increase awareness about its effects.
To this end, the Trajectory optimizer for Environmental

Purposes (TOEP) is created. The approach consists of
two environmental optimization models. The first uses
evolutionary search to converge to the optimum, specific-
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ally with genetic algorithms. This model is used to verify
the results from the second model. The second model
is based on transcription of the optimal control problem
using direct collocation and is solved using non-linear
programming. Both models use wind data obtained from
the ERA5 hourly re-analysis model [19]. The optimizer
is completely open access, and is based on the Open
Aircraft Performance model [20]. The tool allows for
varying Mach number and optimizes the horizontal and
vertical path simultaneously. To demonstrate the impact
of the approach, a case study is performed for a set of
city pairs. Besides, the impact of the objective is assessed
using a Pareto front. Currently, the approach is solely
concerned with the cruise phase of the trajectory. This is
the most important phase to consider, as aircraft spend
most of their time in the air being in this phase while
it is also the less constrained compared to landing and
take-off [21].
This paper is organized as follows. In section II, the

framework in which the optimization models will be
constructed is presented. section III describes the set-
up and fundamentals of the two numerical models are
described. section IV presents the benchmark studies.
They are performed to verify the approach using simple
(known) solutions. In section V, a comparison between the
environmental impact of actual and optimal trajectories is
given. Besides, this section provides insights in the trade-
off between environmental cost and operating cost as an
objective. Finally, section VI concludes the study.

II. Problem Formulation
A. Aircraft Performance modelling

The equations of motion of a conventional fixed-wing
aircraft can be reduced from a six-degree of freedom
model to a three-degree of freedom point-mass model. The
underlying assumption here is that all forces act through
the centre of gravity, removing any moments. Besides,
the large temporal scale of the problem implies the flight
path angle and heading angle can change instantaneously,
meaning that they do not require a dynamic description.
Finally, the flight path angle is assumed to align with
the pitch angle and the heading angle coincides with the
yaw angle. This leads to the set of equations presented
in Equations 1-5.

dx

dt
= Vtas · cos(γ) · cos(ψ) + wx(1)

dy

dt
= Vtas · cos(γ) · sin(ψ) + wy(2)

dh

dt
= Vtas · cos(γ)(3)

dV tas

dt
= T −D(m,Vtas, h, γ)

m
− g0 · sin(γ)(4)

dm

dt
= −FF (m,Vtas, h)(5)

The first three equations describe the kinematic beha-
viour of the aircraft. Here, the relation of the positional

coordinates x, y, h with respect to the true airspeed
Vtas, heading angle ψ, flight path angle γ and directional
wind w are given. Equation 4 is known as the dynamic
equation, describing the change in true airspeed given
the thrust T, Drag D and flight path angle γ. The fuel
consumption equation (5) completes the model. g0 is the
earth gravitational constant at ground level in m/s2.
The underlying aircraft performance model is OpenAP,

which is built upon aircraft surveillance data and open
literature models. It includes the most important aircraft
data and kinematic libraries required to model aircraft
performance, for the 27 most common aircraft. An im-
portant aspect of OpenAP for this study is the emission
module, which is able to calculate the amount of pollutant
per species. When compared to similar toolkits such as
BADA [22], OpenAP finds very similar characteristics. A
clear advantage of OpenAP over BADA is the fact that it is
an open-source toolkit, which is why this is the selected
aircraft performance model.

B. Environmental & Weather modelling
A monetary metric is used to model the environmental

impact of a flight, as it is simple to convey while it also
creates flexibility for the optimization problem because of
its high-level approach. The metric is based on a recent
study by Grobler et al. (2019) [23]. They estimate the
climate and air quality cost based on a reduced-order
climate model. The researchers consider both CO2 and
non-CO2 emissions, of which the radiative forcing values
are estimated for different phases of flight. These are
used to obtain the global temperature change due to
the emissions. By considering the health, welfare and
ecological cost of these temperature changes, the monetary
cost of emitting certain species is obtained. Naturally,
there are some uncertainties introduced when converting
between radiative forcing and monetary cost, which
results in a range of cost values for each species. In Table I,
the mean unit emission cost values are presented for each
species. Between brackets, the 5th and 95th percentile
are presented. Unless stated otherwise, the mean cost
values are used throughout this study. For an overview of
the specific distribution for each species, please refer to
appendix subsection B.
The wind data used for this research is taken from

the ERA5 model, provided by the European Centre for

Species Climate (USD/tonne) Air Quality (USD/tonne)
CO2 45 (6.7, 120) N/A
NOx -940 (-2600, -120) 21 000 (3300, 69 000)
SOx -20 000 (-53 000, -2700) 30 000 (4700, 100 000)
H2O 2.8 (0.41, 7.5) N/A
HC N/A 2300 (360, 7300)
CO N/A 7000 (980, 25 000)

Table I: Global aggregate cost of emissions in cruise phase as
found by Grobler et al. (2019) [23] for a 3% discount
rate. Between brackets, the 5th and 95th percentile are
provided.
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Medium-Range Weather Forecasts. The model provides
historical hourly estimates of wind speed, using data
assimilation [19]. Using multi-variable ridge regression,
a five-degree multi-variable polynomial is fitted on the
wind data points between the origin and destination. The
ridge regression allows for a regularization of the error,
preventing over-fitting [24]. More information about the
construction of the wind polynomial is available in the
appendix.

C. Optimization Criteria
There are two areas of interest when considering

the optimization criteria. First, the constraints define
the bounds within which the optimizer can search for
the optimum solution. In Table II, the main constraints
imposed on the optimization problem are presented. The
departure and destination airport are given to the model
by the user, and are converted to x, y coordinates using the
OpenAP toolkit. The lower altitude limit is 9,000 meters,
which is below the standard cruising altitude regime
of 10,000 - 13,000 meters to allow the optimum to be
found without enlarging the search space to unreasonable
quantities. The variables which are taken from aircraft
data in OpenAP are in bold. The user does not have to
change these values on a regular basis. The initial mass
is set to 80% of the maximum take-off weight, which
is an arbitrary value chosen because it allows for long
flights while keeping the simulation semi-realistic. Finally,
the flight path angle is kept zero at all times, meaning
that the model will search for a constant optimal cruise
altitude.
The main cost function used throughout this study

is Environmental Cost (EC). The monetary cost of the
emission of different pollutants is implemented according
to Equation 6. In this equation, P is the total number of
species included in the optimization, while α is the unit
emission cost for each respective species in USD per kg,
as found in Table I. mi represents the mass of the emitted
pollutants, which is dependent on the mass flow, true
airspeed and altitude.

(6) EC =
P∑

i=0
αi ·mi(ff, Vtas, h)

To adequately assess the effects of TOEP, it is important
to consider the operating cost. Therefore, a Cost Index
is used to model the actual operating cost. This ratio of
time cost and fuel cost (CI = time cost weight / fuel cost
weight) is frequently used in cost functions associated
with aviation.

The Simple Operating Cost (SOC) is specified in Equa-
tion 7, and is based on the implementation by Yamashita
et al. (2020) [10]. Here, ct is the cost per second flown,
which includes the flight crew, cabin crew and aircraft
maintenance. cf is the unit cost of fuel, respectively. mf

represents the total fuel usage, while tf represents the
total flown time. The cost index value is different for

every airline. For this study, ct and cf are taken to be
0.75 (USD)s−1 and 0.51 (USD)kg−1, respectively [25]. If
not mentioned specifically, the cost index is assumed to
be 0.5.

(7) SOC = CI · ct · tf + (1− CI) · cf ·mf

To allow for a quantitative analysis of the effects of
environmental optimization on the SOC, a mixed objective
function is established in Equation 8. In this equation,
lsoc and lec are the weights given to the SOC and EC
respectively. Their sum is always equal to 1.

(8) Mix = lsoc · SOC + lec · EC

III. Numerical Models
Two methods are deployed to extract optimal trajector-

ies. One of the two models uses the gradient-based search
method called Direct Collocation (DC), which treats the
problem as an optimal control problem. The second model
is a Genetic Algorithm (GA), which employs a heuristic
search to find the global optimal solution. The latter model
is used to verify the former, as the DC model will generally
be able to find more accurate solutions. This section will
describe some inner working and setup of both of these
models.

A. Direct Collocation
Direct collocation is a method to transcribe an optimal

control problem to a non-linear programming problem.
Here, one aims to find the control input that minimizes
a given objective function. The generic notation for this
type of problem is specified in Equation 9 [26]. Here, J
represents the cost function value. E is the Mayer term,
which represents the cost of starting (at t = t0) and ending
(at t = tF ). L is the Lagrange term, which describes the
cost built up along the trajectory. Both E and L are assumed
to be twice differentiable. The first constraint is known
as the dynamic constraint, ensuring that the real system
dynamics match the derivative of the estimated states.
The path constraints h(·) describe bounds on the variables
along the trajectory, while the boundary constraints g(·)
set the limits for all control and state variables.

Min
t,x,u

J = E(t0, tF , x(t0), x(tF )) +
∫ tF

t0

L(t, x(t),u(t))dt

Subject to:
ẋ(t) = f(t, x(t),u(t)) t ∈ [t0, tf ]
h(t,x(t),u(t)) ≤ 0 t ∈ [t0, tf ]
g(t0, tF ,x(t0),x(tF ),u(t0),u(tF )) ≤ 0

(9)

Since the problem presented in Equation 9 is continuous
and generally highly non-linear, it has no analytical
solution. Therefore, discrete time histories of the states
and controls are approximated using transcription. In DC,
the time horizon is discretized into a number of time
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Variable Initial Condition Lower bound Upper bound Final Condition
x, y [m] Dep. Airport Des. Airport
Altitude [m] 9000 Ceiling
Mach [-] Min Mach Max Mach
Mass (kg) 80% MTOW >OEW
Thrust [kN] Max Thrust Min Thrust
Flight path angle [deg] 0 0 0 0

Table II: Table with constraints of the optimization problem. The bold variables are automatically imported from OpenAP as they are
aircraft dependent. The origin and destination airports can be set manually by the user.

intervals. In each of these intervals, a polynomial is fitted
through the state and control variables. This polynomial
is collocated with the system dynamics at the so-called
collocation points, formulating a constraint to enforce
the system behaviour. The approximating functions are
implicit, as the solution is dependent on itself or that of
the next time step [27]. The relationship between the
amount of points at which discrete state information is
available and the order of the approximating polynomial
is notable; A polynomial of degree d requires at least d+1
pieces of information. Since the (implicit) information
available at the nodes consists of the state value itself and
its derivative, there are two pieces of information available
per node. If the polynomial has a degree of four or higher,
additional nodes are therefore required within each time
interval, next to the nodes at the boundaries. The working
principle of collocation is depicted in Figure 2. In this
figure, the black dots represent the nodes at the start
and end of the control interval. Between these nodes, the
polynomial approximating the states is fitted. In this case,
three collocation points are present. At these locations, the
differences ∆ between the state and control estimates for
the polynomial and the actual system dynamics f(xc,uc)
are obtained. These differences are forced to zero by
imposing a constraint at each collocation point. As these
constraints are enforced on each node, the result is a
sparse matrix describing the relation between the node
xn and its neighbours xn−1 and xn+1. This is the input
to the non-linear programming solver.
For the translation of the optimal control problem to a

non-linear programming problem, the symbolic framework
of CasADi [28] is used. This tool provides a smooth
interface to the non-linear programming solver IPOPT
[29]. CasADi is highly flexible and allows users to set up
their own transcription method. In this model, a fifth-
degree polynomial is fitted through 3 collocation points
per interval. A total of 30 control intervals is selected.
The model is set up iteratively, meaning that upon failure
with these initial settings, a new attempt is made with
a different combination of collocation points and control
intervals.

B. Genetic Algorithm
A possible way of optimizing a trajectory is by dis-

cretizing the solution space into a number of waypoints
and evaluating all possible trajectories. However, as the
number of possible trajectories scales exponentially with

Figure 2: General working principle of direct collocation. The time
horizon is discretized into N control intervals. Three
collocation points are located on each control interval.
At these points, the dynamic constraint is enforced by
collocating the estimated polynomial ẋc with the real
system dynamics f(xc, uc).

the amount of possible values per state and the number
of waypoints, the problem quickly becomes too large to
solve.
The concept behind GAs is to use the theory of evolution

to converge to the global optimum, without evaluating all
possible trajectories. Similarly to the Darwin’s evolution
theory, the fittest individuals of a species are able to
pass down their set of genes to the next generation
through the crossover step. By invoking random mutations
to these genes, the global optimum will theoretically
always be obtained without having to evaluate all possible
scenarios. The developed algorithm defines a trajectory as
an individual, which comprises a set of genes. Each gene
is a waypoint containing information about the position
and velocity at that specific location.
The core model consists of four phases, which are part of

an iterative loop. They are presented in Figure 3. The first
generation is created such that the generated trajectories
are spread out over the possible solution space. The fitness
evaluation then estimates the cost of each trajectory, in
accordance with the optimization criteria. In the selection
phase, routes in the generation are selected for later
crossover. This model applies a fitness proportionate
selection, otherwise known as the roulette wheel selection.
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Figure 3: Main phases of any genetic algorithm. An iterative
heuristic search is applied, of which the results of each
iteration are compared against some stopping criteria.
If the criteria are met, the optimal solution is found.

In such operator, the fitness of the trajectory determines
the probability of selection according to Equation 10 [30],
in which fi is the fitness of trajectory i and f is the array
holding all fitness values of the generation.

(10) pi = fi −min(f)
max(f)−min(f)

The crossover phase uses the genes of the selected
individuals to create a new generation. Uniform crossover
is applied, which considers each gene of the child indi-
vidually when placing information from either parent A
or parent B. The parents create two children with a set
of contrasting genes.
An important parameter in this phase is the crossover

rate, which determines how many parents are able to
exchange their genes. A low crossover rate means that
there will be more children cloned from one parent,
while a higher crossover rate will increase the amount of
children being created by the crossover process mentioned
above.
The last phase of the iterative loop is the mutation

of the newly created generation. A set of random genes
is selected and randomly mutated. This random search
is important to avoid getting stuck in local optima. The
mutation rate dictates how many genes will be mutated.
In the genetic algorithm, the method developed by

Hassanat et al. (2019) [31] is used. The researchers
propose to dynamically decrease the mutation rate while
increasing the crossover rate. The GA starts with a
random search, which allows the algorithm to search for
some global optima. Gradually, the search becomes more
greedy until there are almost no mutations anymore.
Hassanat found that this method works specifically well
for a larger population size, which is the reason why
the population size of TOEP-GA is 100. The list below
presents the reader with an overview of the differences
with generic genetic algorithms:

• Initially high mutation rate.
• Initially low crossover rate.
• Decrease mutation rate every generation.
• Increase crossover rate every generation.

IV. Benchmark Studies
The initial validity of both models is proven by present-

ing them with simple problems to which the solution
is known. These preliminary results can be found in
appendix subsection C. Thereafter, TOEP-GA is solely used
as a means of verification for TOEP-DC because of its lower
solution quality. This order of verification is selected to
guarantee robustness of the final model.
The DC model is tested against the GA model by

comparing the results for different objectives and airport
combinations. For 50 flights, the trajectories are optimized
for two different objectives: environmental cost and
operating cost. TOEP-GA operates with 400 generations
of 100 individuals each and an automatic stop when there
has not been an improvement for 150 generations. TOEP-
DC is set up with 30 control intervals, with each three
collocation points.
The results of the analysis can be found in Figure 4a.

In this figure, the relative difference between the two
models is presented for each of the different performance
indicators. Most of the discrepancies remain within two
percent. They can be explained by the simplifications
made in the GA. The coarseness of the grid on which
the possible waypoints are located generally makes the
resulting trajectory less optimal compared to the DC
model. This can be seen in the figure, where the operating
cost and climate cost are slightly lower for the DC and
thus more optimal.
An example of one of the trajectories optimized in the

benchmark studies is between London Heathrow airport
and Los Angeles airport. The horizontal trajectory of the
two models for this city pair can be found in Figure 4b.
Here, the arrows represent the wind vector at 10,400
meters, which is the flight altitude of both the GA and the
DC. Note that the two models produce nearly identical
flight paths, with the DC model being more smooth than
the GA model. The optimal trajectory found by the GA has
an environmental cost of 72,600 USD, while the DC model
finds one with an environmental cost of 71,400 USD1. This
difference of 1.7% is in line with the average discrepancy
in environmental cost between the two models. The
average computational time of the direct collocation
model is 17 seconds, which is 90% faster than the 165
seconds used by the genetic algorithm. The difference
in computational efficiency could partly be explained by
the fact that the interior point optimizer used in CasADi
uses compiled C-code, which can greatly improve the
computation speed. Besides, a genetic algorithm requires a
larger amount of calculations to find the optimal solution.

V. Results
To grasp the impact of the optimized trajectories, it is

imperative to compare the developed model with actual
aircraft trajectories. Besides, the influence of optimizing

1Note that these numbers are provided to give the reader a feeling
for the order of magnitude of the cost on a flight. The unit emission
cost is associated with large uncertainty.
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(a) Difference between TOEP-GA and TOEP-DC obtained
using 50 optimizations between different airports.

(b) Example optimization result of TOEP-GA and TOEP-DC between Heathrow airport and Los
Angeles airport. Note that the result from the DC model is smooth, while the trajectory
following from the GA is a combination of pre-defined grid points.

Figure 4

for environmental purposes on the overall cost can be
visualized by considering Pareto fronts. In these analyses
of the TOEP approach, the TOEP-DC model is used to
perform the optimization.

A. Actual flights vs. Optimal flights
Real flight trajectories on the first of December 2018

are obtained from the Eurocontrol R&D data archive
[32]. Applicable flights for analysis are found using a
filtration process; Only flights with a minimum flight
time of one hour and a cruise altitude of at least 10
kilometres are selected. Besides, airports and aircraft
which are not in the database of OpenAP are removed
from the dataset. After filtration, the 50 routes with
the highest flight frequency are selected. This leads to
the selection of 130 flights for evaluation 2. For more
specific information about their characteristics, the reader
is referred to subsection D. For each trajectory, the
performance indicators flight time, EC, SOC and fuel
usage are obtained using the flight data points, which are
between 5 and 10 minutes apart. To accurately evaluate
the theoretical optimal trajectories for each of the selected
flights, the optimization is performed between the first
and last logged latitude-longitude combinations above
10 kilometres altitude. All flights are optimized for both
environmental cost and operating cost.
In Figure 5, the average differences between the actual

and optimal trajectories are displayed. The x-axis specifies
the type of optimization. On average, the environmental
cost can be reduced with 6.6%. Note that the operating
cost also decreases in this scenario, with 2.5%. This is
due to the partly aligned operating and environmental
cost functions. Both are driven down by a reduction in
fuel usage, which is 4.6% in this scenario. If the flight
path angle is not constrained at 0, the optimal trajectory
would have a continuously increasing altitude. Such a
cruise climb would further reduce the environmental cost
with 0.4%.

2The justification for the selection of this amount of flights is the
computational time associated with the evaluation of a trajectory.

Figure 5: Comparison between results of 130 actual flights and
those of optimized flights. Two types of optimization
are performed.

On the right-hand side of the plot, a comparison with
the SOC optimal scenario is provided. Note that the
flight time and fuel usage have been reduced significantly
more compared to the other scenario. As the operating
cost function (Equation 7) has a linear relationship with
time and fuel, the resulting decrease in operating cost
is expected. The operating cost is mostly driven by fuel
usage, which results in a further reduction of fuel used
compared to the EC-optimal scenario. This contributes to
the large reduction in environmental cost on the right-
hand side of the figure and at the same time explains why
the environmental cost is reduced more in SOC-optimality
compared to operating cost in EC-optimality.
Airlines also optimize for a cost function when de-

termining their routing strategy, which is similar to
the simplified operating cost function adopted in this
study. Therefore, one would expect the performance
indicators in SOC-optimality to be similar to those of
the actual trajectories. The cause of their dissimilarity
is the underlying assumption of direct routing in TOEP.
Whereas airlines often fly specific routes to avoid airspace
or to follow constraints imposed by air traffic control,
the algorithm does not consider any of these constraints.
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This provides insights on the overall potential of climate-
optimal routing. These results confirm that efforts should
be made to loosen airspace constraints and work towards
the implementation of direct routing strategies. An ex-
ample of a real trajectory with inefficient routing can be
found in appendix subsection E.

B. Operating cost vs. environmental cost optimality
Whereas the previous analysis provided useful insights

on the effectiveness of TOFEI, it is interesting to consider a
situation in which the efficiency gained by direct routing
is factored out. Minimum operating cost is a suitable
reference, as airlines often optimize for this or a similar
objective function to determine which route to fly. To
understand the effect of flight duration on these results,
three types of flights are established. A flight shorter than
3 hours is considered short haul, a medium haul flight is
between 3 and 6 hours, and flights longer than 6 hours
are long haul.
Table III presents the environmentally-optimal results

compared to the SOC-optimal scenario. Note that overall,
the environmental cost reduction is 2.0%. As expected,
this is significantly smaller compared to the value obtained
in Figure 5.
For short flights, the environmental cost can only be

reduced with 1.2% while the operating cost increases
with 3.1%. These types of flight have a small optimization
potential, as there are little wind variations and the
relative search space is small because of the limited length
of the flight. As a result, the difference between the two
scenarios is mainly in altitude and velocity. Hence, only a
small reduction in environmental cost is observed.
For long flights, the environmental cost can be de-

creased with 2.7%. This is the result of more wind
variations and a larger relative search space, leading
to a higher optimization potential. This will naturally
yield a larger difference in environmental cost compared
to short haul flights. At the same time, the associated
operating cost does not follow this trend. This seems
to be the result of the relative flight time reduction
between long haul and short haul flights. However, the
optimal combination between altitude, true airspeed and
fuel usage to obtain minimal environmental impact is
nonlinear. Therefore, additional investigations are required
to adequately determine which of these variables drive
the environmental cost most and how this impacts the
difference in operating cost.

C. Pareto Optimality
Multiple Pareto fronts are obtained using the mix

function (Equation 8) and a range of cost indices between
0 and 1. The weight parameters lsoc and lec are changed
linearly changed to obtain a Pareto front. The plots are
generated assuming an Airbus A388 aircraft model. The
origin and destination cities are London and Los Angeles,
respectively.

Figure 6a displays the resulting Pareto fronts. One might
note an increase in horizontal spread of the lines as the
cost index increases. This implies that a higher CI yields
more expensive environmental impact when optimizing
for operating cost. This is a natural result of the operating
cost function. With an increasingly dominated weight
of time cost, it becomes more important to optimize
this parameter than fuel cost. The flight time can only
be reduced by flying faster and more direct, which is
conflicting with the environmental cost. The result is the
increasing ranges of environmental cost.
The figure clearly visualizes a linear relationship

between the operating cost and the cost index. Increasing
the cost index will yield a lower operating cost. A high
cost index implies that the time cost becomes dominant in
the operating cost function, while at a low cost index the
fuel cost will dominate. As the unit cost of time is higher
than that of fuel, this might seem counter-intuitive at first.
However, the amount of fuel used in a flight is generally
significantly higher compared to the flight time. For this
specific flight, the average fuel flow is 3.37 kg/s, which
explains the linear decrease in SOC as the cost index is
increased.
As this behaviour is the especially prominent in the

figure, the Pareto front for a cost index of 0.5 is isolated
in Figure 6b to observe the relation between operating cost
and environmental impact in more detail. The contour
of this plot is exactly the same as for other CI values.
For this cost index, the environmental cost can fluctuate
with 2.9% between the two most extreme optimization
scenarios. At the same time, the operating cost fluctuates
with 2.0%. This is in the same order of magnitude as the
values found in Table III for long haul flights.

D. Sensitivity Studies
The unit emission cost for each species is paired with a

relatively high uncertainty. It is imperative to investigate
their effects on the model. To this end, a sensitivity study
is performed. First, the unit cost is sampled from one of the
distributions presented in appendix subsection B while
keeping other cost parameters constant at their mean
value. This Monte Carlo simulation yields a distribution
of environmental cost that provides insights into both
the effect of the uncertainty and the importance of the
accuracy of the unit emission cost per species.
Besides sampling individual species, the sensitivity

study incorporates an analysis of the overall range of
possible environmental cost values by sampling from all
individual unit cost distributions at the same time. In
this sensitivity study, 1000 samples are taken to find
the optimal trajectory between London Heathrow airport
and Los Angeles airport with the arbitrarily chosen A380
aircraft.
The results of the sensitivity study are given in Figure 7.

Here, the blue lines indicate the resulting distribution from
individual sampling. In red, the results are given for when
all species are sampled at the same time. The mean of
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Flight type # Flights Flight distance [%] Flight time [%] Fuel usage [%] EC [%] SOC [%]
Overall 130 +0.7 +4.4 +1.2 -2.0 +2.8
Short haul 50 +1.4 +4.6 +1.1 -1.2 +3.1
Medium haul 44 +0.7 +4.3 +1.3 -2.2 +2.8
Long haul 36 -0.5 +4.2 +1.2 -2.7 +2.4

Table III: Comparison between results for SOC optimality and EC optimality, split by duration.

(a) Pareto fronts for different cost indices (CI) in a case study between
London Heathrow airport and Los Angeles airport.

(b) Pareto front for a cost index (CI) of 0.5 in a case study between
London Heathrow airport Los Angeles airport.

Figure 6

this distribution is depicted by the dashed green line, at
73,200 USD. The green solid lines correspond to the 90%
confidence interval of the combined sampling scenario,
which is located between 15,000 and 170,000 USD. It is
evident that the impact of the uncertainty in both NOx and
CO2 is multiple orders of magnitude larger than that of
H2O, HC and CO. This has two causes. First, the majority
of the environmental cost consists of CO2 and NOx, with
an average share of 23% and 76%, respectively. Moreover,
the uncertainty of NOx is multiple orders of magnitude
greater than that of the other species, as found in Table I.
When sampling from all distributions at the same time,

the mean environmental cost is similar to the 72,800 USD
one obtains when using the mean unit cost values as input,
which helps prove the validity of the obtained distribution.
The right tail of the data distribution is longer than the
left tail, which is the result of the unit cost distributions
each having a similar shape. Note that the environmental
cost values encountered in the sensitivity analysis of H2O,
HC and CO are larger than the mean cost found in the
combined study. This is caused by the fact that in this
scenario, the NOx and CO2 values are kept constant at
their mean value, which is above their mode. The right
skewed nature of their species distributions causes the
observed phenomenon.

E. Discussion
The results presented in this study show that optimal

routing strategies can significantly contribute to the
mitigation of aviation climate effects. When optimizing
solely for climate impact, the average environmental
cost could be reduced with 6.6% compared to current
operations.

When conscious of the difference in scope and model
set-up of other research, one can perform a comparison
between this study and others. Research by Tian et al.
(2019) [17] also considered a monetary environmental
cost. In their first paper, the researchers found that
optimizing for this metric yields a reduction of 3.3%
compared to optimality for operating cost. This is similar
to the values found in this study. One major difference
between the two studies is that Tian performed a 2D
search, whereas TOEP incorporates a 3D search for
optima.
Yamashita et al. (2020) [10] found that when compared

to cost-optimal trajectories, the average temperature
response could be reduced with up to 68%. This is a
significant difference with the results presented in this
paper. Two reasons for this major dissimilarity are found
in the scope of the studies. First, the temperature response
obtained by Yamashita is measured in Kelvin ·10−7. As
the absolute change in temperature is small between
objectives, Yamashita naturally finds a larger change when
compared to the EC as a cost metric. Besides, Yamashita
considered the formation of contrails. The impact of these
aviation-induced clouds on the results obtained by the
researchers is found to be significant.
Some limitations can be identified in the scope of the

research presented in this paper. First, environmental-
optimality is achieved by optimizing an objective function
which does not take into consideration contrails. In a
recent study, Lee et al. [33] find that contrails formed
due to condensed exhaust gas contribute for up to 50%
to aviation-induced global warming. Due to the large
uncertainty associated with contrail cost, they have been
left out of the scope of this study. As more research is done
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Figure 7: Sensitivity analysis results. In blue, the distribution
obtained by sampling one species are presented while
the red distribution represents results from sampling
all unit cost values at the same time. The green dotted
line represents the mean value of the red distribution.

in this field, one can expect more accurate modelling to
enable the inclusion of their effects in future work. Besides,
this study only considered the cruise phase of flight. It
would be interesting for future research to investigate
the options of incorporating a multiphase optimization
problem into TOEP-DC, to enable optimization of the full
flight. Another limitation imposed by the scope of this
research is the initial mass assumption. This study assumes
the initial mass as a constant fraction of the maximum
take-off weight. Upon comparison with actual flights
this raises the question as to how much this constraint
influences the results. As the Eurocontrol dataset does
not provide the mass of the aircraft, the constraint is kept.
A more thorough analysis should be performed to assess
the impact the starting mass has on the results.
The main limitations of the optimization criteria used in

this study are threefold. First, specific airspace constraints
have not been considered. This resulted in a more optimal
environmental cost compared to real flights, even when
optimizing for operating cost. Whereas this is an uninten-

ded side effect of the model, it does show the significant
possibilities of direct routing. Furthermore, the path angle
of aircraft is zero throughout the trajectory. This meant
that TOEP selected the best constant altitude to fly at. An
investigation shows that if this constraint is not present,
the environmental cost could decrease with an additional
0.4%. For future studies, it is recommended to set up an
optimization in which the flight path angle is allowed to
vary for a limited time. Finally, large uncertainties are
introduced by using the emission cost values from Grobler
et al. (2019) [23]. It is imperative that the quality of
the solution produced by TOEP is directly correlated with
the certainty associated with the unit cost of emission
per species. The sensitivity study in this paper provides
the range of possible environmental cost values due to
this uncertainty. The unit cost values, especially that of
NOx, should be more certain before the environmental
cost function can be used as an objective in real life
optimization. Therefore, it is worth investigating a non-
monetary objective function. The global warming potential
values presented in the research by Förster et al. (2016)
could provide an adequate starting point [15].

VI. Conclusions
The aim of this paper was to present an open approach

which takes the next step in Trajectory Optimization For
Environmental Impact (TOFEI) research by incorporating
a more realistic scope compared to the status quo: consid-
ering wind, variable Mach number and a comprehensive
environmental impact metric. This study developed the
Trajectory Optimizer for Environmental Purposes (TOEP),
which is based on the open aircraft performance model
OpenAP and the non-linear optimizer CasADi.

Two models were established to find optimal trajector-
ies. A genetic algorithm was established to verify the
results of the direct collocation model. To model the
environmental impact, a monetary environmental cost
metric was used. Upon comparison between the two
approaches, some minor discrepancies were found. These
could be attributed to the set-up of the genetic algorithm,
specifically the coarseness of its grid. In future studies,
the developed genetic algorithm could remain relevant.
As the computational efficiency of the direct collocation
model is influenced by the initial guess that is provided,
the genetic algorithm could perform an initial search to
find an adequate starting point.
In a comparison with real-life flights, TOEP performed

specifically well in optimizing for the environmental cost.
Compared to a set of 130 actual flights, a reduction of 6.6%
in environmental impact can be achieved. The analysis con-
firmed the consensus that reducing the number of airspace
constraints helps reduce the environmental impact of
aviation. Moreover, a comparison was performed between
optimization results for two different objective functions.
The environmental cost is 2.0% lower when optimizing for
this parameter compared to the environmental cost when
optimizing for operating cost. Specifically, long flights are
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found to be suitable for optimization.
A sensitivity study reveals that the uncertainty in unit

emission cost of NOx has the most profound impact on the
environmental cost. The large uncertainty in this species
leads to large fluctuations in the outcome. For an arbitrary
long haul flight between Los Angeles airport and London
Heathrow airport with an airbus A380 aircraft, one can
be 90% certain that the environmental cost is between
15,000 and 170,000 USD. More research towards the
unit environmental cost should be performed, specifically
focusing on that of NOx and contrails.
This study has demonstrated the process of trajectory

optimization for environmental impact based on new
environmental cost metrics of flights. A realistic test case
is applied to manifest the future step towards implement-
ation. Most importantly, built upon open models and
tools, TOEP gives stakeholders the opportunity to discover
trajectory optimization for environmental purposes in an
open framework.
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