Nuclear Waste and Biocatalysis: A Sustainable Liaison?

Wuyuan Zhang,* Huanhuan Liu, Morten M. C. H. van Schie, Peter-Leon Hagedoorn, Miguel Alcalde, Antonia G. Denkova, Kristina Djanashvili, and Frank Hollmann*

ABSTRACT: It is well-known that energy-rich radiation induces water splitting, eventually yielding hydrogen peroxide. Synthetic applications, however, are scarce and to the best of our knowledge, the combination of radioactivity with enzyme-catalysis has not been considered yet. Peroxygenases utilize H_2O_2 as an oxidant to promote highly selective oxyfunctionalization reactions but are also irreversibly inactivated in the presence of too high H_2O_2 concentrations. Therefore, there is a need for efficient in situ H_2O_2 generation methods. Here, we show that radiolytic water splitting can be used to promote specific biocatalytic oxyfunctionalization reactions. Parameters influencing the efficiency of the reaction and current limitations are shown. Particularly, oxidative inactivation of the biocatalyst by hydroxyl radicals influences the robustness of the overall reaction. Radical scavengers can alleviate this issue, but eventually, physical separation of the enzymes from the ionizing radiation will be necessary to achieve robust reaction schemes. We demonstrate that nuclear waste can also be used to drive selective, peroxygenase-catalyzed oxyfunctionalization reactions, challenging our view on nuclear waste in terms of sustainability.

KEYWORDS: radiation, biocatalysis, oxyfunctionalization, peroxygenases, sustainability

It is known since decades that radiolytic splitting of water results in the formation of various radicals, which eventually form H_2O_2 and H_2.1 Interestingly, with the exception of radical-initiated polymerization of vinyl monomers2,3 or hydrogen production,4 this reaction has not yet caught the attention of organic chemists. Particularly, hydrogen peroxide could be used to drive a broad range of catalytic oxidation reactions.5 Peroxygenases (UPOs, E.C. 1.11.2.1), for example, are a class of enzymes catalyzing a broad range of specific, H_2O_2-dependent oxyfunctionalization reactions ranging from the hydroxylation of aromatic and aliphatic C−H-bonds, epoxidation of C==C-bonds, and oxygenation of heteroa-toms.6−8 For this, peroxygenases utilize a heme prosthetic group, which in the presence of H_2O_2 is transformed into an oxo-ferryl species (Compound I) mediating the oxyfunctionalization reaction (Scheme 1).7 Utilizing this “H_2O_2 shunt pathway”, peroxygenases are independent from the complex electron transport chains utilized by P450 monoxygenases to form Cpd I via reductive activation of O_2.9−12

In the presence of too high concentrations of H_2O_2, however, peroxygenases are also irreversibly inactivated.13−15 To alleviate this issue, a range of in situ H_2O_2 generation systems have been developed, mostly comprising catalytic reduction of H_2O_2.13−15 These systems can be categorized by the sacrificial reductant used (Table S1). The well-known glucose oxidase system,16,17 for example, transforms glucose into gluconic acid, thereby yielding more than 190 g of waste per mol H_2O_2 generated. Formic acid,18 methanol,19−21 H_p,22 or electrochemical power,23−26 are more attractive from the atom economy point of view. Water oxidation27−29 appears most appealing as here, the atom efficiency is the highest. In this context, the radiolytic formation of H_2O_2 may represent an interesting alternative method (Figure 1a).
As a radiation source, we used an external gamma radiation source ^{60}Co, which is widely applied, for example, in radiotherapy (i.e., gamma knife) and sterilization.

Indeed, an aqueous buffer placed next to the radiation source steadily accumulated H_2O_2 up to 0.1 mM at which the H_2O_2 concentration plateaued (in the case of a dose rate of 12.9 Gy min$^{-1}$) (Figure 1b). In another experiment, we presupplemented the buffer with 0.5 mM H_2O_2 and observed a steady decrease in the H_2O_2 concentration to approximately 0.1 mM (Figure 1b). Apparently, the constant H_2O_2 concentration was the result of a steady state between H_2O splitting (yielding H_2O_2) and radiolysis-based splitting of H_2O_2 (yielding H_2O and O_2). The position of the steady state depended on the intensity (i.e., dose rate) of the radiation source (Figure S1).

Next, we combined the ^{60}Co-induced water radiolysis with a UPO-catalyzed hydroxylation reaction. As a model reaction, we used the selective hydroxylation of ethyl benzene to (R)-1-phenyl ethanol catalyzed by the recombinant, evolved peroxygenase from *Agrocybe aegerita* (rAaeUPO). To confirm that the overall reaction followed the mechanism outlined in Figure 2a, a range of control reactions were executed: performing the reaction either in the absence or using thermally inactivated rAaeUPO yielded no product formation, while in the presence of rAaeUPO, enantiomerically pure (>99% ee) (R)-1-phenyl ethanol was formed. The presence or absence of molecular oxygen had no obvious influence on the product formation rate. Furthermore, performing the reaction in ^{18}O-enriched water resulted in the formation of ^{18}O-labeled (R)-1-phenyl ethanol (Figure 2b,c). This confirms that indeed the reaction medium serves as a source of H_2O_2 and that reduction of O_2 (from ambient air) played a minor role in the H_2O_2 formation. (R)-1-phenyl ethanol was the sole product observed, indicating that the selectivity of the biocatalyst was not impaired under the reaction conditions, particularly by the radioactivity. A control reaction with (R)-1-phenyl ethanol only under the irradiation showed that radiation-induced further oxidation of the primary enzyme product ((R)-1-phenyl ethanol) can be ruled out.

Next, we further investigated some factors influencing the efficiency and robustness of the overall reaction (Figure 3). Increasing the biocatalyst concentration increased the product formation within the first hour (Figure 3a). This increase, however, was not linear and converged to approx. 0.25 mM h$^{-1}$ at rAaeUPO concentrations above 100 nM. Interestingly, this product formation rate was approx. twofold higher than the H_2O_2 accumulation rate observed in the absence of the biocatalysts (Figure 1b). This observation can be attributed to the irreversible peroxygenase step removing H_2O_2 from the steady-state equilibrium. A respectable turnover number for the biocatalyst (TN = moles$^{\text{Product}}$/moles$^{\text{Catalyst}}$) of more than 1400 was observed for the biocatalyst.

These experiments, however, also revealed a poor long-term stability of the enzyme under the reaction conditions. Already after 1 h of reaction (approx. 770 Gy under the dose rate of 12.9 Gy min$^{-1}$), the product formation ceased, which we interpreted as loss of enzyme activity (Figure S2). This assumption is supported by a considerable decrease in the...
As major contributors to the observed biocatalyst inactivation, we tested a range of different radical scavengers (Figure 3b). Among these radical scavengers especially methanol, acrylamide, and formate enabled significantly increased product formation (Figure 3b). The effect depended on the concentration of the radical scavenger as exemplified with methanol and formate (Figures S5 and S6). We therefore also compared the time courses of the radioenzymatic reactions in the absence and presence of the radical scavengers methanol and formate (Figure 3c). Most strikingly, the conversion of ethyl benzene to (R)-1-phenyl ethanol was increased from approx. 18%, in the case of reactions in the absence of radical scavengers, to full conversion, in the presence of sodium formate. In the latter case, a turnover number for the biocatalyst of 40.000 was achieved, which we attribute to a higher enzyme stability because of a decreased concentration of hydroxyl radicals. This assumption was also supported by electron paramagnetic resonance experiments, which revealed that in the presence of both methanol or formate, the in situ *OH concentration was significantly reduced (Figures S7 and S8).

The dose rate of the radiation source directly influenced the product formation of the radioenzymatic reaction system (Table 1). The final product concentration (and directly related to this also the turnover number of the enzyme) directly correlated with the dose rate of the radioactive source applied. Interestingly, the “radiation yield”, that is, the amount of product formed per Gy, correlated inversely with the dose rate. This may be due to a decreased radiolytic H2O2 decomposition at lower dose rates, whereas the biocatalyst concentration remained constant. Further experiments will be necessary to fully rationalize this observation. Pleasantly, the reactions performed with spent fuel element (235U) also showed good robustness.

Finally, we initially explored the substrate scope of the proposed radioenzymatic reaction scheme (Figure 4). For this, some further oxyfunctionalization reactions reported for rAaeUPO, such as epoxidation as well as aliphatic and aromatic hydroxylation reactions, were chosen. With the exception of the epoxidation of cis-ß-methyl styrene, where the optical purity of the epoxide product was somewhat lower than reported, the regio- and enantioselectivity of the biocatalyst was not impaired under the reaction conditions and essentially identical results compared to previous experiments with this enzyme using alternative H2O2 generation methods were obtained.

Table 1. Radioenzymatic Hydroxylation of Ethyl Benzene Using Different Radiation Sources

| radiation source | 60Co-1 | 60Co-2 | 235U
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>dose rate [Gy min⁻¹]</td>
<td>12.9</td>
<td>1.0</td>
<td>1.67</td>
</tr>
<tr>
<td>(R)-1-phenyl ethanol [mM]</td>
<td>0.91</td>
<td>0.29</td>
<td>0.39</td>
</tr>
<tr>
<td>ee [%]</td>
<td>>99</td>
<td>>99</td>
<td>>99</td>
</tr>
<tr>
<td>TONrAaeUPO</td>
<td>18,200</td>
<td>5800</td>
<td>7800</td>
</tr>
<tr>
<td>radiation yield [μMproduct × Gy⁻¹]</td>
<td>0.196</td>
<td>0.806</td>
<td>0.659</td>
</tr>
</tbody>
</table>

General reaction conditions: sodium phosphate buffer (60 mM, pH 7), [ethyl benzene] = 1 mM, [rAaeUPO] = 50 nM, [sodium formate] = 50 mM, T = 22 °C, t = 1 h (a,b). The dose rate was 12.9 Gy min⁻¹. Error bars indicate the standard deviation of duplicate experiments (n = 2).
Figure 4. Preliminary product scope of the proposed radioenzymatic reactions. (a) Specific oxyfunctionalization reactions catalyzed by rAaeUPO; (b) CiVCPO-catalyzed hydroxybromination reactions. Reaction results shown in black originate from reactions in the absence of formate, whereas results shown in green stem from reactions performed (under otherwise identical conditions) in the presence of 50 mM NaHCO₃. Reaction conditions: General: the dose rate in each experiment was 12.9 Gy min⁻¹, T = 22 °C, t = 6 h. Experiments were performed as duplicates; [substrate] = 1 mM, cosolvent: tridecanoic acid (50 mM Tris-HCl, pH 8), 30% (v/v) MeCN as solvent, [rAaeUPO] = 50 nM, [substrate] = 1 mM, buffer: citrate buffer (100 mM, pH S), [CiVCPO] = 50 nM, [NaBr] = 5 mM.

In conclusion, we have demonstrated that radiolytic water splitting can be used to promote biocatalytic oxyfunctionalization reactions. H₂O₂ formed as a consequence of γ-irradiation of the reaction mixture enabled “donor-independent” H₂O₂ generation from water. The dose-rate-dependent steady-state concentration appears ideal to provide heme-dependent peroxygenases with suitable concentrations of H₂O₂ that enable the reaction while minimizing the oxidative inactivation. This advantage, at least in the present setup, is compensated by the radical-induced inactivation of the biocatalyst, this is also reflected by the comparably poor performance of the present system compared to other in situ H₂O₂ generation systems (Table S1). Compared with (enzymatic) H₂O₂ generation systems (which largely avoid the intermediate occurrence of radical species), the peroxygenases’ turnover numbers fall back approx. 10-fold. Compared to other (radical-generating) H₂O₂ generation systems, the turnover numbers observed here compare very well. The radical inactivation of the biocatalysts represents an apparent shortcoming of the current setup. In future experiments, we will address this by physical separation of the biocatalyst from the radiation source. Flow chemistry appears a particularly attractive technical solution.

Although this approach at first sight may appear as a lab curiosity, we believe that it may actually bear some practical relevance. In this study, we have demonstrated that spent fuel elements can drive peroxygenase-catalyzed reactions. Considering the annually increasing amounts of radioactive waste and its persistence, the proposed radioenzymatic approach may represent a possibility to productively utilize nuclear waste. Furthermore, it should be kept in mind that globally a variety of different radiation sources are used commercially. For instance, ⁶⁰Co units are used for sterilization and electron beams for various applications and research nuclear reactors (more than 250 worldwide).

EXPERIMENTAL SECTION

Production of the Biocatalysts.

The evolved, unspecific peroxygenase from Agrocybe aegerita (rAaeUPO) was obtained from fermentation of recombinant Pichia pastoris as previously described. The culture broth containing rAaeUPO in the supernatant was clarified by centrifugation followed by ultrafiltration and filtered through a 20 μm filter. The enzyme preparation was stored at −80 °C until further use. The vanadium-dependent chloroperoxidase from C. inaequalis (CiVCPO) was produced by recombinant expression in Escherichia coli as described previously. The crude cell extracts were treated with isopropanol (50% v/v) to precipitate nucleic acids and endogeneous E. coli proteins. The clarified supernatant was supplemented with (NH₄)₂VO₄ (100 μMfinal) to reconstitute the holoenzyme.

Radiochemical Experiments.

All radiochemical experiments were performed by placing 2 mL GC vials filled with 1 mL of the reaction mixture next to the radioactivity source (Figure S10). All reactions were performed at ambient temperature (22 °C). At intervals, samples were removed from the radiation source and analyzed. For H₂O₂ quantification, we used using Ghormley’s triiodide method. For the analysis of the radioenzymatic reactions, the reaction mixtures were further processed and analyzed by GC or HPLC as described previously.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acscatal.0c03059.

Detailed experimental and analytical details and further experimental results (PDF)
AUTHOR INFORMATION

Corresponding Authors

Wuyuan Zhang – Department of Biotechnology, Delft University of Technology, 2629 HZ Delft, The Netherlands; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 300308 Tianjin, China; orcid.org/0000-0002-3182-5107; Email: zhangwyr@tib.cas.cn

Frank Hollmann – Department of Biotechnology, Delft University of Technology, 2629 HZ Delft, The Netherlands; orcid.org/0000-0003-4821-756X; Email: f.hollmann@ tudelft.nl

Authors

Huanhuan Liu – Radiation Science and Technology, Delft University of Technology, 2629 JB Delft, The Netherlands

Morten M. C. H. van Schie – Department of Biotechnology, Delft University of Technology, 2629 HZ Delft, The Netherlands

Peter-Leon Hagedoorn – Department of Biotechnology, Delft University of Technology, 2629 HZ Delft, The Netherlands; orcid.org/0000-0001-6342-2022

Miguel Alcalde – Department of Biocatalysis, Institute of Catalysis, CSI, 28049 Madrid, Spain; orcid.org/0000-0001-6780-7616

Antonia G. Denkova – Radiation Science and Technology, Delft University of Technology, 2629 JB Delft, The Netherlands

Kristina Djanashvili – Department of Biotechnology, Delft University of Technology, 2629 HZ Delft, The Netherlands; orcid.org/0000-0003-1511-015X

Complete contact information is available at: https://pubs.acs.org/10.1021/acscatal.0c03059

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Financial support by the European Research Council (ERC Consolidator Grant no. 648026) is gratefully acknowledged. W.Z. gratefully acknowledges financial support by Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences. We thank Astrid van de Meer for excellent technical assistance with 90Co irradiation.

REFERENCES

