MA
Miguel Alcalde
43 records found
1
This study explores a chemoenzymatic cascade to synthesise chiral β-hydroxy ketones by integrating the selective oxyfunctionalisation capabilities of peroxygenases with the carbon-carbon bond-forming progress of organocatalysts. Initial results with simple organocatalysts demonst
...
The generation of enantiodivergent biocatalysts for C-H oxyfunctionalizations is ever more important in modern synthetic chemistry. Here, we have applied the FuncLib algorithm based on phylogenetic and Rosetta calculations to design a diverse repertoire of active, stable, and ena
...
Unspecific peroxygenases (UPOs) are promising biocatalysts for oxyfunctionalisation reactions, owing to their simplicity of handling, stability and robustness. A limitation of using UPOs on a large scale is their deactivation in the presence of even rather modest concentrations o
...
Biocatalytic oxidation reactions of toluene derivates to the corresponding aldehydes are typically challenged by regio- and chemoselectivity issues. In this contribution we address both challenges by a combined reactant- and reaction engineering approach. We demonstrate that the
...
Mol-scale oxyfunctionalization of cyclohexane to cyclohexanol/cyclohexanone (KA-oil) using an unspecific peroxygenase is reported. Using AaeUPO from Agrocybe aegerita and simple H2O2 as an oxidant, cyclohexanol concentrations of more than 300 mM (>60% yield) at attractive prod
...
A peroxygenase-catalysed hydroxylation of organosilanes is reported. The recombinant peroxygenase from Agrocybe aegerita (AaeUPO) enabled efficient conversion of a broad range of silane starting materials in attractive productivities (up to 300 mM h−1), catalyst perfor
...
Utilisation of fatty acids generally relies on pre-existing functional groups such as the carboxylate group or C=C-double bonds. Addition of new functionalities into the hydrocarbon part opens up new possibilities for fatty acid valorisation. In this contribution we demonstrate t
...
The use of water-miscible organic co-solvents in biocatalysis is a simple procedure for obtaining higher enzymatic activities toward hydrophobic substrates. However, effects on activity and stability have to be carefully evaluated, also with regard to the type and concentration o
...
The selective insertion of oxygen into non-activated organic molecules has to date been considered of utmost importance to synthesize existing and next generation industrial chemicals or pharmaceuticals. In this respect, the minimal requirements and high activity of fungal unspec
...
In this study, we developed a new bienzymatic reaction to produce enantioenriched phenylethanols. In a first step, the recombinant, unspecific peroxygenase from Agrocybe aegerita (rAaeUPO) was used to oxidise ethylbenzene and its derivatives to the corresponding ketones (prochira
...
The pilot-scale production of the peroxygenase from Agrocybe aegerita (rAaeUPO) is demonstrated. In a fed-batch fermentation of the recombinant Pichia pastoris, the enzyme was secreted into the culture medium to a final concentration of 0.29 g L-1 corresponding to 735 g of the pe
...
Oxyfunctionalisation reactions in neat substrate still pose a challenge for biocatalysis. Here, we report an alginate-confined peroxygenase-CLEA to catalyse the enantioselective epoxidation of cis-β-methylstyrene in a solvent-free reaction system achieving turnover numbers of 96
...
Fungal unspecific peroxygenases (UPOs) are efficient biocatalysts that insert oxygen atoms into nonactivated C–H bonds with high selectivity. Many oxyfunctionalization reactions catalyzed by UPOs are favored in organic solvents, a milieu in which their enzymatic activity is drast
...
Peroxygenases are an emerging new class of enzymes allowing selective oxyfunctionalisation reactions in a cofactor-independent way different from well-known P450 monooxygenases. Herein, we focused on recent developments from organic synthesis, molecular biotechnology and reaction
...
Aromatic hydroxylation reactions catalyzed by heme-thiolate enzymes proceed via an epoxide intermediate. These aromatic epoxides could be valuable building blocks for organic synthesis giving access to a range of chiral trans-disubstituted cyclohexadiene synthons. Here, we show t
...
Peroxyzymes simply use H2O2 as a cosubstrate to oxidize a broad range of inert C-H bonds. The lability of many peroxyzymes against H2O2 can be addressed by a controlled supply of H2O2, ideally in situ. Here, we report a simple, robust, and water-soluble anthraquinone sulfonate (S
...
Fungal peroxygenases are deemed emergent biocatalysts for selective C-H bond oxyfunctionalization reactions. In this study, we have engineered a functional and stable self-sufficient chimeric peroxygenase-oxidase fusion. The bifunctional biocatalyst carried a laboratory-evolved v
...
Peroxidases and peroxygenases are promising classes of enzymes for biocatalysis because of their ability to carry out one-electron oxidation reactions and stereoselective oxyfunctionalizations. However, industrial application is limited, as the major drawback is the sensitivity t
...
Nuclear Waste and Biocatalysis
A Sustainable Liaison?
It is well-known that energy-rich radiation induces water splitting, eventually yielding hydrogen peroxide. Synthetic applications, however, are scarce and to the best of our knowledge, the combination of radioactivity with enzyme-catalysis has not been considered yet. Peroxygena
...
The use of neat reaction media, that is the avoidance of additional solvents, is the simplest and the most efficient approach to follow in biocatalysis. Here, we show that unspecific peroxygenase from Agrocybe aegerita (AaeUPO) can hydroxylate the neat model substrate cyclohexane
...