A Post-tensioned Cross-Laminated Timber core for buildings

More Info
expand_more

Abstract

This master thesis is on post-tensioning cross-laminated timber stability cores for multiple story buildings. When designing a CLT core, significantly larger core sections will be needed than when designing a stabilizing core in concrete. This is for one part due to the limited stiffness of the CLT compared to concrete. For another part it is due to the limited stiffness of connectors in CLT. Sliding and uplift can occur in connections in CLT loaded in tension and shear respectively. The CLT panels behave like rigid bodies, with most of the displacement occurring at the connections. In addition, cooperation between flange and web may be limited, depending on the stiffness of the corner connection and the occurrence of shear lag. Post-tensioning is suggested as a solution to diminish uplift and sliding in the connectors. In this way, with the same core section, a taller building may be realized compared to the non-post-tensioned case. In the thesis also the long-term effects on the prestress level is assessed, as estimating these effects is important for the safety of the system.
This thesis adds to the body of knowledge on post-tensioned CLT structures. Firstly, previous studies on post-tensioned CLT focus on individual shear walls and on seismic design situations. This thesis explores how beneficial post-tensioning is from the perspective of serviceability limit state governed design. Furthermore, though post-tensioning as a prestressing method has been applied often in concrete structures, prestressing of CLT is a novel research subject. Especially the estimation of long-term force loss is a topic that still requires research. This thesis provides the designer with a straightforward calculation method (using python) for estimation of prestress force loss in the long-term.
The research was carried out with a literature study and a case-study. The literature research comprised of studies on structural design with CLT loaded in-plane; the effective flange of a CLT core; stiffness of connections in CLT; prestressing of CLT; a design approach for post-tensioning; time dependent losses in post-tensioned CLT. The case study was based on a fictitious floorplan including a “minimal core”, and at expressing the benefit of post-tensioning in terms of height gain.
The degree to which the flange and the web cooperate showed highly dependent on the connection between flange and web and the core height. In the case study, the effective flange width showed to depend highly on the height of the core and the stiffness of the connection between flange and web.
In the case-study, without post-tensioning, approximately half of the displacements could be attributed to the connections. With post-tensioning, the uplift and sliding displacements in the horizontal joints was eliminated. Consequently, the attainable height was significantly increased: from 5 storeys in the un-post-tensioned case, to 8 storeys in the post-tensioned case. Long-term effects on the prestress loss were considerable. In the case-study, approximately 40% loss of post-tension force in the lifetime of the building was predicted and included in the design. Largest causeof force loss was due to changes of moisture content during construction. The remaining lateral displacements after post-tensioning were due to bending and shear.
Post-tensioning of CLT cores is a powerful method for reducing lateral displacements in cases where uplift and sliding are dominant contributors to the lateral displacements. This is especially the case in light-weight buildings. Uplift and sliding displacements can be eliminated altogether with post-tensioning. The designer should realize that post-tensioning does not increase the bending and shear stiffness of the core. The thesis also concludes that with the post-tensioning of CLT walls, the compressive strength of the CLT in the so-called “compression-toe” might be exceeded. It is an important check in design. Furthermore, depending on the decision to re-tighten the rods at some point or not, the post-tension force loss should be calculated and included in finding the right prestress level. For this estimation of the moisture level of the CLT proved to be an important but difficult step. It is likely that the 40% force loss in the case-study is on the conservative side, since a large change in moisture content has been assumed. In practice, the moisture content can be measured on site. This can help verify the assumptions on the moisture content used in force loss calculations. This can help in assuring the structure is safe in the long-term.