Searched for: +
(61 - 80 of 100)

Pages

document
Xu, Y. (author), Schlangen, E. (author), Šavija, B. (author)
Mechanical behavior of cementitious cellular composites (CCC) with auxetic behavior was investigated under uniaxial compression and cyclic loading. Three cellular structures with different geometrical parameters are designed and prepared by 3D printing technique. Meanwhile, plain mortar and fiber reinforced mortar are used as constituent...
book chapter 2020
document
Šavija, B. (author), Zhang, H. (author), Schlangen, E. (author)
This work aims to understand deformation and fracture processes in blast furnace slag cement pastes made using CEM III/B which is commonly used in the Dutch infrastructure sector. First, based on our previous work on Portland cement pastes, a micromechanical model utilizing nanoindentation and X-ray computed tomography (CT) for input is...
journal article 2020
document
Romero Rodriguez, C. (author), França de Mendonça Filho, F. (author), Mercuri, L. (author), Gan, Y. (author), Rossi, E. (author), Anglani, G. (author), Antonaci, P. (author), Schlangen, E. (author), Šavija, B. (author)
In this study, the interface between different types of bacteria-embedded self-healing polylactic acid capsules (PLA) and cement paste is investigated. Particularly, the changes in microstructure and mechanical properties of the interface with respect to bulk cement paste were studied. First, nanoindentation was performed to obtain maps of...
journal article 2020
document
Xu, Y. (author), Schlangen, E. (author), Lukovic, M. (author), Šavija, B. (author)
This research presents an investigation of the compressive behavior of auxetic cementitious cellular composites (CCCs) using a combination of experiments and finite element (FE) simulations. Typical auxetic centrosymmetric geometry was used as unit cells for the cellular structure and fiber reinforced cementitious mortar were used as...
journal article 2020
document
Zhang, H. (author), Šavija, B. (author), Lukovic, M. (author), Schlangen, E. (author)
This work proposes a method for numerically investigating the fracture mechanism of cement paste at the microscale based on X-ray computed tomography and nanoindentation. For this purpose, greyscale level based digital microstructure was generated by X-ray microcomputed tomography with a resolution of 2 μm/voxel length. In addition,...
journal article 2019
document
Xu, Y. (author), Zhang, H. (author), Šavija, B. (author), Chaves Figueiredo, S. (author), Schlangen, E. (author)
A method is presented to model deformation and fracture behavior of 3D printed disordered lattice materials under uniaxial tensile load. A lattice model was used to predict crack pattern and load-displacement response of the printed lattice materials. To include the influence of typical layered structures of 3D printed materials in the...
journal article 2019
document
Romero Rodriguez, C. (author), Chaves Figueiredo, S. (author), França de Mendonça Filho, F. (author), Schlangen, E. (author), Šavija, B. (author)
The potential of using phase change materials (PCM) in cementitious materials to mitigate damage due to thermal loadings has been recently focus of intensive research. In the case of PCM with transition temperatures near to the freezing point of water, their potential to delay frost in a cementitious matrix has been largely investigated through...
conference paper 2019
document
Mercuri, L. (author), Romero Rodriguez, C. (author), Xu, Y. (author), Chaves Figueiredo, S. (author), Mors, R.M. (author), Rossi, E. (author), Anglani, G. (author), Antonaci, P. (author), Šavija, B. (author), Schlangen, E. (author)
Soft inclusions, such as capsules and other particulate admixtures are increasingly being used in cementitious materials for functional purposes (i.e. self-healing and self-sensing of concrete). Yet, their influence on the fracture behaviour of the material is sometimes overlooked and requires in-depth study for the optimization of mechanical...
conference paper 2019
document
Xu, Y. (author), Schlangen, E. (author), Šavija, B. (author)
Strain hardening cementitious composites are a class of cementitious materials showing metal-like (i.e. pseudo-plastic) behavior in tension due to their multiple cracking ability. This is commonly achieved through use of fiber reinforcement (such as PVA) or, similarly, textile reinforcement (TRC). Increasing the ductility is important in...
conference paper 2019
document
Xu, Y. (author), Šavija, B. (author), Schlangen, E. (author)
Traditionally, mechanical properties of cementitious materials are designed<br/>“chemically”, namely by configuring their mix proportions. Owning to the development of 3D printing technology, “physical” tailoring the meso-structure of cementitious materials to design their mechanical properties becomes possible. In the present study,...
conference paper 2019
document
Zhang, H. (author), Schlangen, E. (author), Šavija, B. (author)
This work aims to investigate the mechanical properties of the cement paste-aggregate interface by combining experimental and numerical approaches. The multi-phase interface microstructure was obtained by X-ray computed tomography (XCT) and submitted to a discrete fracture lattice model for fracture analysis. Apart from the modelling, a...
conference paper 2019
document
Chang, Z. (author), Zhang, H. (author), Schlangen, E. (author), Šavija, B. (author)
The aim of this work is to investigate the fracture process of concrete under various boundary conditions. Although numerous concrete fracture tests have been reported, showing the failure behavior of concrete, their evaluation is ambiguous due to the limitations of specimen size and experimental conditions. Therefore, it is necessary to use...
conference paper 2019
document
Gan, Y. (author), Zhang, H. (author), Šavija, B. (author), Schlangen, E. (author), van Breugel, K. (author)
Nanoindentation is usually used to investigate local elastic properties and hardness of materials. In this paper, the nanoindenter served as a loading tool to perform micro scale bending tests and measure the global response of micro-scale specimens. For testing, cement paste cantilever beams with a square cross-section of 300 μm × 300 μm were...
conference paper 2019
document
Zhang, H. (author), Xu, Y. (author), Gan, Y. (author), Chang, Z. (author), Schlangen, E. (author), Šavija, B. (author)
The aim of this work is to investigate the mechanical performance of hardened cement paste (HCP) under compression at the micrometre length scale. In order to achieve this, both experimental and numerical approaches were applied. In the experimental part, micrometre sized HCP specimens were fabricated and subjected to uniaxial compression by...
journal article 2019
document
Šavija, B. (author), Zhang, H. (author), Schlangen, E. (author)
Properties of concrete are, to a large extent, dependent on the properties of its binding constituent, hydrated cement paste. Therefore, knowledge of properties of hydrated cement paste is crucial for predicting concrete behavior. This paper presents an experimentally informed approach for modeling elastic and transport properties of cement...
journal article 2019
document
Zhang, H. (author), Gan, Y. (author), Xu, Y. (author), Zhang, Shizhe (author), Schlangen, E. (author), Šavija, B. (author)
The aim of this work is to predict the micromechanical properties of interfacial transition zone (ITZ) by combining experimental and numerical approaches. In the experimental part, hardened cement paste (HCP) cantilevers (200 μm × 100 μm × 100 μm) attached to a quartzite aggregate were fabricated and tested using micro-dicing saw and...
journal article 2019
document
Romero Rodriguez, C. (author), Chaves Figueiredo, S. (author), Deprez, M. (author), Snoeck, D. (author), Schlangen, E. (author), Šavija, B. (author)
Recently the concept of crack self-sealing has been investigated as a method to prevent degradation and/or loss of functionality of cracked concrete elements. To obtain self-sealing effect in the crack, water swelling admixtures such as superabsorbent polymers (SAP) are added into the cementitious mix. In order to design such self-sealing...
journal article 2019
document
Zhang, H. (author), Šavija, B. (author), Schlangen, E. (author)
This work presents a study of stochastic fracture properties of cement paste at the micro length scale based on a combination of X-ray computed tomography (XCT) technique and discrete lattice type fracture model. Thirty virtual specimens consisting of pore, outer hydration products, inner hydration products and anhydrous cement particles were...
journal article 2018
document
Zhang, H. (author), Schlangen, E. (author), Šavija, B. (author)
Cement paste is the glue that holds concrete together and any improvements in material performance will come from its microstructure. For better understanding and predicting its elastic properties and fracture performance, more and more studies are carried out based on micromechanics simulations. However, the predicted results can be hardly...
conference paper 2018
document
Šavija, B. (author), Smith, G.M. (author), Heard, Peter J. (author), Sarakinou, Eleni (author), Darnbrough, James E. (author), Hallam, Keith R. (author), Schlangen, E. (author), Flewitt, Peter E.J. (author)
Commercial graphites are used for a wide range of applications. For example, Gilsocarbon graphite is used within the reactor core of advanced gas-cooled reactors (AGRs, UK) as a moderator. In service, the mechanical properties of the graphite are changed as a result of neutron irradiation induced defects and porosity arising from radiolytic...
journal article 2018
Searched for: +
(61 - 80 of 100)

Pages