Searched for: +
(1 - 4 of 4)
document
Yin, F. (author), Grewe, V. (author), Castino, F. (author), Rao, P.V. (author), Matthes, S (author), Dahlmann, K. (author), Dietmüller, Simone (author), Frömming, C. (author), Yamashita, H. (author)
The Modular Earth Submodel System (MESSy) provides an interface to couple submodels to a base model via a modular flexible data management facility. This paper presents the newly developed MESSy submodel, ACCF version 1.0 (ACCF 1.0), based on algorithmic Climate Change Functions version 1.0 (aCCFs 1.0), which describes the climate impact of...
journal article 2023
document
Rao, P.V. (author), Dwight, R.P. (author), Singh, D. (author), Maruhashi, J. (author), Dedoussi, I.C. (author), Grewe, V. (author), Frömming, Christine (author)
While efforts have been made to curb CO2 emissions from aviation, the more uncertain non-CO2 effects that contribute about two-thirds to the warming in terms of radiative forcing (RF), still require attention. The most important non-CO2 effects include persistent line-shaped contrails, contrail-induced cirrus clouds and nitrogen oxide (NOx)...
conference paper 2023
document
Rao, P.V. (author), Yin, F. (author), Grewe, V. (author), Yamashita, Hiroshi (author), Jöckel, Patrick (author), Matthes, Sigrun (author), Mertens, Mariano (author), Frömming, Christine (author)
Aviation contributes to 3.5% of anthropogenic climate change in terms of Effective Radiative Forcing (ERF) and 5% in terms of temperature change. Aviation climate impact is expected to increase rapidly due to the growth of air transport sector in most regions of the world and the effects of the COVID-19 pandemic are expected to only have a...
abstract 2022
document
Rao, P.V. (author), Yin, F. (author), Grewe, V. (author), Yamashita, Hiroshi (author), Jöckel, Patrick (author), Matthes, Sigrun (author), Mertens, Mariano (author), Frömming, Christine (author)
One possibility to reduce the climate impact of aviation is the avoidance of climate-sensitive regions, which is synonymous with climate-optimised flight planning. Those regions can be identified by algorithmic Climate Change Functions (aCCFs) for nitrogen oxides (NOx), water vapour (H2O) as well as contrail cirrus, which provide a measure of...
journal article 2022
Searched for: +
(1 - 4 of 4)