Searched for: +
(1 - 4 of 4)
document
Alpeggiani, F. (author), Parappurath, N. (author), Verhagen, Ewold (author), Kuipers, L. (author)
The scattering matrix is a fundamental tool to quantitatively describe the properties of resonant systems. In particular, it enables the understanding of many photonic devices of current interest, such as photonic metasurfaces and nanostructured optical scatterers. In this contribution, we show that the scattering matrix of a photonic system...
conference paper 2017
document
de Angelis, L. (author), Alpeggiani, F. (author), Di Falco, Andrea (author), Kuipers, L. (author)
Phase singularities can be created and annihilated, but always in pairs. With optical near-field measurements, we track singularities in random waves as a function of wavelength, and discover correlations between creation and annihilation events.
conference paper 2017
document
Parappurath, N. (author), Alpeggiani, F. (author), Kuipers, L. (author), Verhagen, E. (author)
We develop a theoretical formalism which explains asymmetric transmission (AT) in chiral resonators from their eigenmodes. We derive a fundamental limit for AT and propose the design of a chiral photonic crystal offering 84% AT.
conference paper 2017
document
de Angelis, L. (author), Alpeggiani, F. (author), Di Falco, Andrea (author), Kuipers, L. (author)
Phase singularities arise in scalar random waves, with spatial distribution reminiscent of particles in liquids. Supporting near-field experiment with analytical theory we show how such spatial distribution changes when considering vector waves.
conference paper 2016
Searched for: +
(1 - 4 of 4)