Searched for: +
(41 - 60 of 287)

Pages

document
Nedeljković, Marija (author), Kamat, Ameya (author), Holthuizen, Patrick (author), Tošić, Nikola (author), Schlangen, E. (author), Fennis, Sonja (author)
This paper presents the measurement and analysis of energy consumption of a laboratory jaw crusher during concrete recycling. A method was developed to estimate the power requirements of a lab-scale jaw crusher. The impact of material properties on the crusher performance is studied. Eight concrete strength classes (C20/25–C80/95) were...
journal article 2023
document
Al-Obaidi, S.M.J. (author), He, S. (author), Schlangen, E. (author), Ferrara, Liberato (author)
This study investigates the bond-slip behavior of micro steel fibers embedded into an Ultra-High-Performance Concrete (UHPC) matrix as affected by the self-healing of the same matrix in different exposure conditions. The UHPC matrix contains a crystalline admixture as a promoter of the autogenous self-healing specially added to enhance the...
journal article 2023
document
Liang, M. (author), He, S. (author), Gan, Yidong (author), Zhang, Hongzhi (author), Chang, Z. (author), Schlangen, E. (author), Šavija, B. (author)
This paper employs computer vision techniques to predict the micromechanical properties (i.e., elastic modulus and hardness) of cement paste based on an input of Backscattered Electron (BSE) images. A dataset comprising 40,000 nanoindentation tests and 40,000 BSE micrographs was built by express nanoindentation test and Scanning Electron...
journal article 2023
document
Liang, M. (author), Chang, Z. (author), Zhang, Y. (author), Cheng, H. (author), He, S. (author), Schlangen, E. (author), Šavija, B. (author)
This study aims to experimentally investigate the autogenous deformation and the stress evolution in restrained high-volume ground granulated blast furnace slag (GGBFS) concrete. The Temperature Stress Testing Machine (TSTM) and Autogenous Deformation Testing Machine (ADTM) were used to study the macro-scale autogenous deformation and stress...
journal article 2023
document
Chen, Y. (author), Liang, M. (author), Zhang, Y. (author), Li, Z. (author), Šavija, B. (author), Schlangen, E. (author), Copuroglu, Oguzhan (author)
Autogenous shrinkage may be a critical issue concerning the use of limestone-calcined clay-cement (LC3) in high-performance concrete and 3D printable cementitious materials, which have relatively low water to binder (W/B) ratio. Adding an internal curing agent, i.e., superabsorbent polymer (SAP), could be a viable solution in this context....
journal article 2023
document
Chang, Z. (author), Liang, M. (author), Xu, Y. (author), Wan, Z. (author), Schlangen, E. (author), Šavija, B. (author)
In this study, an experimental setup to characterize the early-age creep of 3D printable mortar was proposed. The testing protocol comprises quasi-static compressive loading-unloading cycles, with 180-s holding periods in between. An analytical model based on a double power law was used to predict creep compliance with hardening time and...
journal article 2023
document
Chen, Y. (author), Zhang, Y. (author), He, S. (author), Liang, M. (author), Zhang, Yamei (author), Schlangen, E. (author), Copuroglu, Oguzhan (author)
Limestone-calcined clay-cement (LC3), as one of the most promising sustainable cements, has been under development over the past decade. However, many uncertainties remain regarding its rheological behaviors, such as the metakaolin content of calcined clay. This study aims to investigate the effect of increasing the content of fine-grained...
journal article 2023
document
Chen, Y. (author), Chang, Z. (author), He, S. (author), Copuroglu, Oguzhan (author), Šavija, B. (author), Schlangen, E. (author)
A good bond between the layers of 3D printed cementitious materials is a prerequisite for having high structural rigidity for the printed elements. However, the influence of printing process on an interlayer bond is still not well understood. This study investigates the influence of curing methods (i.e., air curing, plastic film covering, wet...
journal article 2022
document
França de Mendonça Filho, F. (author), Romero Rodriguez, C. (author), Schlangen, E. (author), Copuroglu, Oguzhan (author)
Concrete structures perform poorly when withstanding thermal shock events, usually requiring repair or replacement after one single instance. In certain industries (such as petrol, metallurgic and ceramics), these events are not only likely but frequent, which represents a considerable financial burden. One option to solve this issue would be to...
journal article 2022
document
Huang, Y. (author), Grunewald, S. (author), Schlangen, E. (author), Lukovic, M. (author)
Ultra-High Performance Fiber-Reinforced Concrete (UHPFRC) is, due to its superior mechanical properties and low permeability, a promising material for the restoration and improvement of the mechanical resistance and durability of existing Reinforced Concrete (RC) structures. This paper reviews the strengthening applications of UHPFRC in flexure,...
review 2022
document
Mustafa, S. (author), Schlangen, E. (author), Lukovic, M. (author)
The construction industry is experiencing a significant increase in hybrid concrete structures due to the need for repairing/strengthening of existing structures and the development of novel hybrid structures. The crack development and the ultimate capacity of hybrid concrete structures may significantly be governed by the properties of...
conference paper 2022
document
van Overmeir, A.L. (author), Chaves Figueiredo, S. (author), Šavija, B. (author), Bos, Freek P. (author), Schlangen, E. (author)
Since the advent of three-dimensional concrete printing (3DCP), several studies have shown the potential of strain hardening cementitious composites (SHCC) as a self-reinforcing printable mortar. However, only a few papers focus on achieving sufficient buildability when developing printable SHCC. This study investigates the role of the...
journal article 2022
document
Gao, Peng (author), Ye, G. (author), Huang, Haoliang (author), Qian, Zhiwei (author), Schlangen, E. (author), Wei, Jiangxiong (author), Yu, Qijun (author)
A structure-based modelling framework was established to simulate the three-dimensional autogenous shrinkage of cement paste. A cement hydration model, HYMOSTRUC3D-E, was used to obtain the microstructures and ionic concentrations of the cement paste. A lattice fracture model based on the effective stress and effective modulus was used to...
journal article 2022
document
Liang, M. (author), Chang, Z. (author), He, S. (author), Chen, Y. (author), Gan, Y. (author), Schlangen, E. (author), Šavija, B. (author)
Early-age stress (EAS) is an important index for evaluating the early-age cracking risk of concrete. This paper encompasses a thermo-chemo-mechanical (TCM) model and active ensemble learning (AEL) for predicting the EAS evolution. The TCM model provides the data for the AEL model. First, based on Fourier's law, Arrhenius’ equation, and rate...
journal article 2022
document
Sherzer, G. Lifshitz (author), Ye, G. (author), Schlangen, E. (author), Kovler, K. (author)
It has been observed that a trench wall embedded in the soil of the Dead Sea has lost strength and is deteriorating due to brine attack. This phenomenon demonstrates that concrete wall structural stability and durability can be seriously endangered. Yet conventional analysis using macroscopic models is considered an oversimplification, as it...
journal article 2022
document
Tabatabaeian, A. (author), Liu, Sixin (author), Harrison, Philip (author), Schlangen, E. (author), Fotouhi, M. (author)
Recently emerging mechanochromic systems are becoming highly attractive for structural health monitoring (SHM) purposes in various industries, such as civil, wind, and aerospace, to improve the safety and performance of structures. These are based on self-reporting polymer composites which provide a light-weight sensor with an easy-to-read...
review 2022
document
Gan, Y. (author), Zhang, Hongzhi (author), Liang, M. (author), Zhang, Y. (author), Schlangen, E. (author), van Breugel, K. (author), Šavija, B. (author)
In this study, the flexural strength and fatigue properties of interfacial transition zone (ITZ) were experimentally investigated at the micrometre length scale. The hardened cement paste cantilevers (150 × 150 × 750 μm<sup>3</sup>) attached to a quartzite aggregate surface were prepared and tested under the monotonic and cyclic load using a...
journal article 2022
document
Chang, Z. (author), Liang, M. (author), Xu, Y. (author), Schlangen, E. (author), Šavija, B. (author)
This research studies the impact of localized damage and deformed printing geometry on the structural failure of plastic collapse for 3D concrete printing (3DCP) using the lattice model. Two different approaches are utilized for buildability quantification: the (previously developed) load-unload method, which updates and relaxes the printing...
journal article 2022
document
He, S. (author), Zhang, Shizhe (author), Lukovic, M. (author), Schlangen, E. (author)
Strain hardening cementitious composite (SHCC) is a special class of ultra-ductile material which has autogenous self-healing capability due to its intrinsic tight crack widths. To further improve its healing ability, healing agent (HA) can be incorporated in SHCC, enabling it also the autonomous self-healing mechanism. In this study, the...
journal article 2022
document
Schlangen, E. (author), Liang, M. (author), Šavija, B. (author)
The study aims to investigate the mechanism of early-age cracks in different massive concrete structures (i.e. tunnels, bridge foundations and underground parking garages), with the objective of answering the following three specific questions: <br/><br/>1) How does the parameters of concrete proportion mix (e.g. w/c ratio, cementitious...
book chapter 2022
Searched for: +
(41 - 60 of 287)

Pages