Searched for: +
(81 - 100 of 128)

Pages

document
Gan, Y. (author), Zhang, Hongzhi (author), Liang, M. (author), Schlangen, E. (author), van Breugel, K. (author), Šavija, B. (author)
In this study, a numerical model using a 2D lattice network is developed to investigate the fatigue behaviour of cement paste at the microscale. Images of 2D microstructures of cement pastes obtained from XCT tests are used as inputs and mapped to the lattice model. Different local mechanical and fatigue properties are assigned to different...
journal article 2021
document
Xu, Y. (author), Schlangen, E. (author), Šavija, B. (author)
Door toepassing van 3D-printtechnieken kunnen cementgebonden materialen worden ontwikkeld met een bijzondere, niet-homogene interne structuur. Deze materialen kunnen auxetisch gedrag vertonen: ze zetten zijdelings uit (worden dikker) wanneer ze worden uitgerekt en ze trekken zijdelings samen als ze worden samengeperst. Aan de TU Delft is...
journal article 2020
document
van Bokhorst, J.R. (author), Schlangen, E. (author), Galjaard, Hans (author), Šavija, B. (author), Lukovic, M. (author)
Beton is tijdens het verharden onderhevig aan thermische en autogene vervormingen. Wanneer deze worden verhinderd, resulteert dit in spanningen en het risico op scheurvorming, mede afhankelijk van relaxatie. Aan de TU Delft is onderzoek gedaan naar het effect van spanningsrelaxatie op scheurvorming in jong beton. In tegenstelling tot de...
journal article 2020
document
Romero Rodriguez, C. (author), França de Mendonça Filho, F. (author), Chaves Figueiredo, S. (author), Schlangen, E. (author), Šavija, B. (author)
Recent studies have shown that concrete containing Phase Change Materials (PCM) with low transition temperatures may reduce the number of freeze/thaw cycles suffered by the cementitious composite in temperate climates. Nevertheless, the positive influence of such admixtures on the frost resistance of cement-based materials has not been...
journal article 2020
document
Xu, Y. (author), Zhang, H. (author), Schlangen, E. (author), Lukovic, M. (author), Šavija, B. (author)
Auxetic behavior refers to material with negative Poisson's ratio. In this research, a new type of cementitious auxetic material is developed. A novel crack bridging auxetic mechanism is discovered which is in contrast with a local buckling mechanism commonly employed to trigger auxetic behavior. Taking advantage of 3D printing techniques,...
journal article 2020
document
Khern, Yih Chen (author), Paul, Suvash Chandra (author), Kong, Sih Ying (author), Babafemi, Adewumi John (author), Anggraini, Vivi (author), Miah, Md Jihad (author), Šavija, B. (author)
Studies have shown that the incorporation of waste tire rubber aggregates reduces the strength, increases permeability and decrease thermal conductivity of concrete. However, only a few studies have investigated the effect of surface-modified rubber aggregates on the properties of concrete. This study investigates the effect of the surface...
journal article 2020
document
Zhang, H. (author), Xu, Y. (author), Gan, Y. (author), Chang, Z. (author), Schlangen, E. (author), Šavija, B. (author)
Application of micromechanical modelling of hydrated cement paste (HCP) gains more and more interests in the field of cementitious materials. One of the most promising approaches is the use of so-called microstructure informed micromechanical models, which provides a direct link between microstructure and mechanical properties. In order to...
journal article 2020
document
Zhang, H. (author), Xu, Y. (author), Gan, Y. (author), Schlangen, E. (author), Šavija, B. (author)
This paper presents a validation process of the developed multi-scale modelling scheme on mortar composites. Special attention was paid to make the material structure of real and virtual mortar specimens comparable at the meso-scale. The input mechanical parameters of cement paste (both bulk cement paste and interfacial transition zone) at the...
journal article 2020
document
Ali, Md Kawsar (author), Miah, Md Jihad (author), Paul, Suvash Chandra (author), Babafemi, Adewumi John (author), Kong, Sih Ying (author), Šavija, B. (author)
This study evaluates the mechanical, durability, and residual compressive strength (after being exposed to 20, 120, 250, 400 and 600 °C) of mortar that uses recycled iron powder (RIP) as a fine aggregate. Within this context, mechanical strength, shrinkage, durability, and residual strength tests were performed on mortar made with seven...
journal article 2020
document
Chang, Z. (author), Zhang, Hongzhi (author), Schlangen, E. (author), Šavija, B. (author)
The lattice fracture model is a discrete model that can simulate the fracture process of cementitious materials. In this work, the Delft lattice fracture model is reviewed and utilized for fracture analysis. First, a systematic calibration procedure that relies on the combination of two uniaxial tensile tests is proposed to determine the input...
journal article 2020
document
Jiang, Nengdong (author), Zhang, Hongzhi (author), Chang, Z. (author), Schlangen, E. (author), Ge, Zhi (author), Šavija, B. (author)
A combination of laboratory experiments and numerical simulations at multiple length scales can provide in-depth understanding of fracture behaviour of hydrated cement paste (HCP). To that end, the current work presents a numerical study on compressive failure of hydrated cement paste (HCP) at the micro-scale. Virtual specimens consisting of...
journal article 2020
document
Zhang, H. (author), Romero Rodriguez, C. (author), Dong, H. (author), Gan, Y. (author), Schlangen, E. (author), Šavija, B. (author)
Carbonation of hydrated cement paste (HCP) causes numerous chemo-mechanical changes in the microstructure, e.g., porosity, strength, elastic modulus, and permeability, which have a significant influence on the durability of concrete structures. Due to its complexity, much is still not understood about the process of carbonation of HCP. The...
journal article 2020
document
Perko, Janez (author), Ukrainczyk, Neven (author), Šavija, B. (author), Phung, Quoc Tri (author), Koenders, Eddie A. B. (author)
A coupled numerical approach is used to evaluate the influence of pore connectivity and microcracks on leaching kinetics in fully saturated cement paste. The unique advantage of the numerical model is the ability to construct and evaluate a material with controlled properties, which is very difficult under experimental conditions. Our analysis...
journal article 2020
document
Gan, Y. (author), Vandamme, Matthieu (author), Zhang, Hongzhi (author), Chen, Y. (author), Schlangen, E. (author), van Breugel, K. (author), Šavija, B. (author)
This study proposes an experimental method for studying the short-term creep behaviour of cement paste at micro-scale. The micro-bending tests on miniaturized cantilever beams were used to characterize the viscoelastic properties of cement paste. The effects of w/b ratio, the type of binder and the stress level on the microscopic creep...
journal article 2020
document
Siang Ng, Ding (author), Paul, Suvash Chandra (author), Anggraini, Vivi (author), Kong, Sih Ying (author), Qureshi, Tanvir Shams (author), Romero Rodriguez, C. (author), Liu, Qing feng (author), Šavija, B. (author)
This study explores the effects of different types of nanoparticles, namely nano-SiO<sub>2</sub> (NS), nano-TiO<sub>2</sub> (NT), and nano-Fe<sub>2</sub>O<sub>3</sub> (NF) on the fresh properties, mechanical properties, and microstructure of cement mortar containing fly ash as a supplementary cementitious material. These nanoparticles existed...
journal article 2020
document
Šavija, B. (author), Zhang, H. (author), Schlangen, E. (author)
This work aims to understand deformation and fracture processes in blast furnace slag cement pastes made using CEM III/B which is commonly used in the Dutch infrastructure sector. First, based on our previous work on Portland cement pastes, a micromechanical model utilizing nanoindentation and X-ray computed tomography (CT) for input is...
journal article 2020
document
Rossi, E. (author), Polder, R.B. (author), Copuroglu, Oguzhan (author), Nijland, Timo (author), Šavija, B. (author)
Although reinforcement corrosion is a well-known issue, which are the locations of the steel/concrete interface most sensitive to pitting corrosion is still an unclear issue. In this study, X-ray computed tomography is used to characterize eight 20-years-old reinforced concrete cores naturally deteriorated due to chloride-induced corrosion....
journal article 2020
document
Romero Rodriguez, C. (author), França de Mendonça Filho, F. (author), Mercuri, L. (author), Gan, Y. (author), Rossi, E. (author), Anglani, G. (author), Antonaci, P. (author), Schlangen, E. (author), Šavija, B. (author)
In this study, the interface between different types of bacteria-embedded self-healing polylactic acid capsules (PLA) and cement paste is investigated. Particularly, the changes in microstructure and mechanical properties of the interface with respect to bulk cement paste were studied. First, nanoindentation was performed to obtain maps of...
journal article 2020
document
Xu, Y. (author), Schlangen, E. (author), Lukovic, M. (author), Šavija, B. (author)
This research presents an investigation of the compressive behavior of auxetic cementitious cellular composites (CCCs) using a combination of experiments and finite element (FE) simulations. Typical auxetic centrosymmetric geometry was used as unit cells for the cellular structure and fiber reinforced cementitious mortar were used as...
journal article 2020
document
Zhang, H. (author), Šavija, B. (author), Lukovic, M. (author), Schlangen, E. (author)
This work proposes a method for numerically investigating the fracture mechanism of cement paste at the microscale based on X-ray computed tomography and nanoindentation. For this purpose, greyscale level based digital microstructure was generated by X-ray microcomputed tomography with a resolution of 2 μm/voxel length. In addition,...
journal article 2019
Searched for: +
(81 - 100 of 128)

Pages