Searched for: +
(161 - 168 of 168)

Pages

document
Lukovic, M. (author), Šavija, B. (author), Ye, G. (author), Schlangen, E. (author), van Breugel, K. (author)
Corrosion of steel reinforcement is the main cause of deterioration in reinforced concrete structures. It can result in cracking and spalling of the concrete cover. After the damaged cover is repaired, reinforcement corrosion might continue and even accelerate. While the development of the corrosion cell is difficult to control, the damage can...
journal article 2017
document
Lukovic, M. (author), Šavija, B. (author), Schlangen, E. (author), Ye, G. (author), van Breugel, K. (author)
Differential shrinkage between repair material and concrete substrate is considered to be the main cause of premature failure of repair systems. The magnitude of induced stresses depends on many factors, for example the degree of restraint, moisture gradients caused by curing and drying conditions, type of repair material, etc. Numerical...
journal article 2016
document
Šavija, B. (author), Lukovic, M. (author)
Cement paste is known to react with atmospheric carbon dioxide. Carbonation of cement paste has long been recognized as one of the causes of reinforcement corrosion. On the other hand, carbonation causes numerous chemomechanical changes in the cement paste, most notably changes in strength, porosity, pore size distribution, and chemistry....
journal article 2016
document
Heard, P (author), Šavija, B. (author), Liu, D (author), Smith, GE (author), Hallam, KR (author), Schlangen, E. (author), Flewitt, P.E.J. (author)
In quasibrittle materials the addition of specific microstructural features such as porosity can lead to departure from linear elastic behaviour prior to maximum force, followed by graceful failure. A simple but extreme example is reticulated vitreous carbon foam, with its opencell structure of brittle ligaments connected in a threedimensional...
conference paper 2016
document
Šavija, B. (author), Lukovic, M. (author), Pacheco Farias, J. (author), Schlangen, E. (author)
Reinforcement corrosion is the most important deterioration mechanism affecting reinforced concrete infrastructures. After corrosion starts, expansive pressures are exerted onto the surrounding concrete, causing cracking and spalling of the cover concrete. The amount of cover cracking can possibly be reduced by using strain hardening...
conference paper 2016
document
Šavija, B. (author), Schlangen, E. (author)
Phase change materials (PCMs) have found their use in concrete technology for increasing energy efficiency of building envelopes. In recent years, however, new potential applications for PCMs in concrete have been suggested, for example for reducing freeze-thaw damage and melting of ice forming on top of concrete pavements. A recent application...
journal article 2016
document
Šavija, B. (author), Lukovic, M. (author), Schlangen, E. (author)
Strain-hardening cementitious composites (SHCCs) are a class of cement-based materials that show strain-hardening behavior in tension. This is achieved by multiple microcracking, which results in a tightly spaced crack pattern with relatively small crack widths (50–80 μm, in general) and high strain capacity (up to 4–5%). Because of their...
journal article 2016
document
Zhang, H. (author), Šavija, B. (author), Chaves Figueiredo, S. (author), Lukovic, M. (author), Schlangen, E. (author)
This work aims to provide a method for numerically and experimentally investigating the fracture mechanism of cement paste at the microscale. For this purpose, a new procedure was proposed to prepare micro cement paste cubes (100 × 100 × 100 µm3) and beams with a square cross section of 400 × 400 µm2. By loading the cubes to failure with a...
journal article 2016
Searched for: +
(161 - 168 of 168)

Pages