Searched for: +
(1 - 5 of 5)
document
Serra Gomez, A. (author), Zhu, H. (author), Ferreira de Brito, B.F. (author), Böhmer, J.W. (author), Alonso-Mora, J. (author)
Decentralized multi-robot systems typically perform coordinated motion planning by constantly broadcasting their intentions to avoid collisions. However, the risk of collision between robots varies as they move and communication may not always be needed. This paper presents an efficient communication method that addresses the problem of “when...
journal article 2023
document
Zhu, H. (author), Ferreira de Brito, B.F. (author), Alonso-Mora, J. (author)
In this paper, we present a decentralized and communication-free collision avoidance approach for multi-robot systems that accounts for both robot localization and sensing uncertainties. The approach relies on the computation of an uncertainty-aware safe region for each robot to navigate among other robots and static obstacles in the...
journal article 2022
document
Alonso-Mora, J. (author), Montijano, Eduardo (author), Nägeli, Tobias (author), Hilliges, Otmar (author), Schwager, Mac (author), Rus, Daniela (author)
This paper presents a distributed method for formation control of a homogeneous team of aerial or ground mobile robots navigating in environments with static and dynamic obstacles. Each robot in the team has a finite communication and visibility radius and shares information with its neighbors to coordinate. Our approach leverages both...
journal article 2018
document
Alonso-Mora, J. (author), Baker, Stuart (author), Rus, Daniela (author)
We present a constrained optimization method for multi-robot formation control in dynamic environments, where the robots adjust the parameters of the formation, such as size and three-dimensional orientation, to avoid collisions with static and moving obstacles, and to make progress towards their goal. We describe two variants of the...
journal article 2017
document
Alonso-Mora, J. (author), DeCastro, Jonathan A. (author), Raman, Vasumathi (author), Rus, Daniela (author), Kress-Gazit, Hadas (author)
In the near future mobile robots, such as personal robots or mobile manipulators, will share the workspace with other robots and humans. We present a method for mission and motion planning that applies to small teams of robots performing a task in an environment with moving obstacles, such as humans. Given a mission specification written in...
journal article 2017
Searched for: +
(1 - 5 of 5)