Searched for: +
(1 - 20 of 32)

Pages

document
Hedayati, R. (author), Hosseini-Toudeshky, H (author), Sadighi, M. (author), Mohammadi-Aghdam, M. (author), Zadpoor, A.A. (author)
The mechanical behavior of additively manufactured porous biomaterials has recently received increasing attention. While there is a relatively large body of data available on the static mechanical properties of such biomaterials, their fatigue behavior is not yet well-understood. That is partly because systematic study of the fatigue behavior...
journal article 2016
document
Li, Y. (author), Zhou, J. (author), Pavanram, P. (author), Leeflang, M.A. (author), Fockaert, L.I. (author), Pouran, B. (author), Tümer, N. (author), Schröder, K. U. (author), Mol, J.M.C. (author), Weinans, Harrie (author), Jahr, H. (author), Zadpoor, A.A. (author)
An ideal bone substituting material should be bone-mimicking in terms of mechanical properties, present a precisely controlled and fully interconnected porous structure, and degrade in the human body to allow for full regeneration of large bony defects. However, simultaneously satisfying all these three requirements has so far been highly...
journal article 2017
document
Hedayati, R. (author), Sadighi, M (author), Mohammadi-Aghdam, M (author), Zadpoor, A.A. (author)
Additively manufacturing (AM) techniques make it possible to fabricate open-cell interconnected structures with precisely controllable micro-architectures. It has been shown that the morphology, pore size, and relative density of a porous structure determine its macro-scale homogenized mechanical properties and, thus, its biological performance...
journal article 2017
document
Hedayati, R. (author), Janbaz, S. (author), Sadighi, M. (author), Mohammadi-Aghdam, M. (author), Zadpoor, A.A. (author)
Although the initial mechanical properties of additively manufactured porous biomaterials are intensively studied during the last few years, almost no information is available regarding the evolution of the mechanical properties of implant-bone complex as the tissue regeneration progresses. In this paper, we studied the effects of tissue...
journal article 2017
document
van Hengel, I.A.J. (author), Riool, Martijn (author), Fratila-Apachitei, E.L. (author), Witte-Bouma, Janneke (author), Farrell, Eric (author), Zadpoor, A.A. (author), Zaat, Sebastian A.J. (author), Apachitei, I. (author)
Additively manufactured Ti-6Al-4V implants were biofunctionalized using plasma electrolytic oxidation. At various time points during this process scanning electron microscopy imaging was performed to analyze the surface morphology (van Hengel et al., 2017) [1]. This data shows the changes in surface morphology during plasma electrolytic...
journal article 2017
document
Hedayati, R. (author), Amin Yavari, S. (author), Zadpoor, A.A. (author)
Additively manufactured porous titanium implants, in addition to preserving the excellent biocompatible properties of titanium, have very small stiffness values comparable to those of natural bones. Although usually loaded in compression, biomedical implants can also be under tensional, shear, and bending loads which leads to crack initiation...
journal article 2017
document
Cuellar Lopez, J.S. (author), Smit, G. (author), Plettenburg, D.H. (author), Zadpoor, A.A. (author)
Fabrication of complex and multi-articulated mechanisms is often seen as a time consuming and demanding process. The development of functional multi-articulated mechanisms that could be fabricated in a single step without the need for post-manufacturing assembly is therefore very attractive. Additive manufacturing (AM) has been pointed out as...
review 2018
document
Li, Y. (author), Jahr, H. (author), Lietaert, K. (author), Pavanram, P. (author), Yilmaz, A. (author), Fockaert, L.I. (author), Leeflang, M.A. (author), Pouran, B. (author), Gonzalez Garcia, Y. (author), Weinans, Harrie (author), Mol, J.M.C. (author), Zhou, J. (author), Zadpoor, A.A. (author)
Additively manufactured (AM) topologically ordered porous metallic biomaterials with the proper biodegradation profile offer a unique combination of properties ideal for bone regeneration. These include a fully interconnected porous structure, bone-mimicking mechanical properties, and the possibility of fully regenerating bony defects. Most...
journal article 2018
document
Ahmadi, S.M. (author), Hedayati, R. (author), Li, Y (author), Lietaert, K. (author), Tümer, N. (author), Fatemi, A. (author), Rans, C.D. (author), Pouran, B. (author), Weinans, Harrie (author), Zadpoor, A.A. (author)
Additive manufacturing (AM) techniques enable fabrication of bone-mimicking meta-biomaterials with unprecedented combinations of topological, mechanical, and mass transport properties. The mechanical performance of AM meta-biomaterials is a direct function of their topological design. It is, however, not clear to what extent the material type...
journal article 2018
document
Hedayati, R. (author), Hosseini-Toudeshky, H. (author), Sadighi, M. (author), Mohammadi-Aghdam, M. (author), Zadpoor, A.A. (author)
Advances in additive manufacturing (AM) techniques have enabled fabrication of highly porous titanium implants that combine the excellent biocompatibility of bulk titanium with all the benefits that a regular volume-porous structure has to offer (e.g. lower stiffness values comparable to those of bone). Clinical application of such...
journal article 2018
document
Cuellar Lopez, J.S. (author), Smit, G. (author), Zadpoor, A.A. (author), Breedveld, P. (author)
In developing countries, prosthetic workshops are limited, difficult to reach, or even non-existent. Especially, fabrication of active, multi-articulated, and personalized hand prosthetic devices is often seen as a time-consuming and demanding process. An active prosthetic hand made through the fused deposition modelling technology and fully...
journal article 2018
document
Zadpoor, A.A. (author)
Additive manufacturing (AM) (=3D printing) has emerged during the last few years as a powerful technological platform for fabrication of functional parts with unique complex geometries and superior functionalities that are next to impossible to achieve using conventional manufacturing techniques. Due to their importance in industrial...
contribution to periodical 2018
document
Zadpoor, A.A. (author)
There has been a growing interest in metallic biomaterials during the last five years, as recent developments in additive manufacturing (=3D printing), surface bio-functionalization techniques, infection prevention strategies, biodegradable metallic biomaterials, and composite biomaterials have provided many possibilities to develop...
contribution to periodical 2018
document
Li, Y. (author), Lietaert, K. (author), Li, W. (author), Zhang, X.Y. (author), Leeflang, M.A. (author), Zhou, J. (author), Zadpoor, A.A. (author)
The corrosion fatigue behavior of additively manufactured topologically ordered porous iron based on diamond unit cells was studied for the first time to understand its response to cyclic loading in a simulated physiological environment. The material exhibited high fatigue resistance with fatigue strengths being 70% and 65% of yield stress in...
journal article 2019
document
Li, Y. (author), Jahr, H. (author), Zhou, J. (author), Zadpoor, A.A. (author)
Partially due to the unavailability of ideal bone substitutes, the treatment of large bony defects remains one of the most important challenges of orthopedic surgery. Additively manufactured (AM) biodegradable porous metals that have emerged since 2018 provide unprecedented opportunities for fulfilling the requirements of an ideal bone...
review 2020
document
Kolken, H.M.A. (author), Lietaert, K. (author), van der Sloten, T. (author), Pouran, B. (author), Meynen, A. (author), Van Loock, G. (author), Weinans, Harrie (author), Scheys, L. (author), Zadpoor, A.A. (author)
The innovative design of orthopedic implants could play an important role in the development of life-lasting implants, by improving both primary and secondary implant fixations. The concept of meta-biomaterials aims to achieve a unique combination of mechanical, mass transport, and biological properties through optimized topological design of...
journal article 2020
document
van Hengel, I.A.J. (author), Gelderman, F. S.A. (author), Athanasiadis, S. (author), Minneboo, M.B. (author), Weinans, Harrie (author), Fluit, A. C. (author), van der Eerden, B.C.J. (author), Fratila-Apachitei, E.L. (author), Apachitei, I. (author), Zadpoor, A.A. (author)
The holy grail of orthopedic implant design is to ward off both aseptic and septic loosening for long enough that the implant outlives the patient. Questing this holy grail is feasible only if orthopedic biomaterials possess a long list of functionalities that enable them to discharge the onerous task of permanently replacing the native bone...
journal article 2020
document
Putra, N.E. (author), Mirzaali, Mohammad J. (author), Apachitei, I. (author), Zhou, J. (author), Zadpoor, A.A. (author)
The growing interest in multi-functional metallic biomaterials for bone substitutes challenges the current additive manufacturing (AM, =3D printing) technologies. It is foreseeable that advances in multi-material AM for metallic biomaterials will not only allow for complex geometrical designs, but also improve their multi-functionalities by...
review 2020
document
van Hengel, I.A.J. (author), Putra, N.E. (author), Tierolf, M. W.A.M. (author), Minneboo, M.B. (author), Fluit, A. C. (author), Fratila-Apachitei, E.L. (author), Apachitei, I. (author), Zadpoor, A.A. (author)
Antibiotic-resistant bacteria are frequently involved in implant-associated infections (IAIs), making the treatment of these infections even more challenging. Therefore, multifunctional implant surfaces that simultaneously possess antibacterial activity and induce osseointegration are highly desired in order to prevent IAIs. The incorporation...
journal article 2020
document
Karami, K. (author), Blok, A. (author), Weber, L.R.M. (author), Ahmadi, S.M. (author), Petrov, R.H. (author), Nikolic, Ksenija (author), Borisov, E.V. (author), Leeflang, M.A. (author), Ayas, C. (author), Zadpoor, A.A. (author), Mehdipour, M. (author), Reinton, T.E. (author), Popovich, V. (author)
Additive manufacturing technologies in general and laser powder bed fusion (L-PBF) in particular have been on the rise in different applications, including biomedical implants. The effects of the various L-PBF process parameters on the microstructure and properties of Ti6Al4V lattice structures have been studied before. However, the...
journal article 2020
Searched for: +
(1 - 20 of 32)

Pages