Searched for: +
(1 - 20 of 33)

Pages

document
Xu, Y. (author), Schlangen, E. (author), Šavija, B. (author)
Mechanical behavior of cementitious cellular composites (CCC) with auxetic behavior was investigated under uniaxial compression and cyclic loading. Three cellular structures with different geometrical parameters are designed and prepared by 3D printing technique. Meanwhile, plain mortar and fiber reinforced mortar are used as constituent...
book chapter 2020
document
Mercuri, L. (author), Romero Rodriguez, C. (author), Xu, Y. (author), Chaves Figueiredo, S. (author), Mors, R.M. (author), Rossi, E. (author), Anglani, G. (author), Antonaci, P. (author), Šavija, B. (author), Schlangen, E. (author)
Soft inclusions, such as capsules and other particulate admixtures are increasingly being used in cementitious materials for functional purposes (i.e. self-healing and self-sensing of concrete). Yet, their influence on the fracture behaviour of the material is sometimes overlooked and requires in-depth study for the optimization of mechanical...
conference paper 2019
document
Xu, Y. (author), Schlangen, E. (author), Šavija, B. (author)
Strain hardening cementitious composites are a class of cementitious materials showing metal-like (i.e. pseudo-plastic) behavior in tension due to their multiple cracking ability. This is commonly achieved through use of fiber reinforcement (such as PVA) or, similarly, textile reinforcement (TRC). Increasing the ductility is important in...
conference paper 2019
document
Xu, Y. (author), Šavija, B. (author), Schlangen, E. (author)
Traditionally, mechanical properties of cementitious materials are designed<br/>“chemically”, namely by configuring their mix proportions. Owning to the development of 3D printing technology, “physical” tailoring the meso-structure of cementitious materials to design their mechanical properties becomes possible. In the present study,...
conference paper 2019
document
Huigen, Vincent (author), Xu, Y. (author), Schlangen, E. (author), Šavija, B. (author)
In order to improve the behaviour of cementitious material under in bending, 3D printed polymeric lattice meshes were used as an alternative to fibre reinforcement. Lattice meshes with different cell sizes and different surface roughness were designed and printed. Plain mortar samples and reinforced samples were casted. After curing, 4-point...
conference paper 2018
document
Xu, S. (author), Liu, X. (author), Tabakovic, A. (author), Schlangen, E. (author)
Incorporating self-healing technology in asphalt pavement has been demonstrated to have great potential to prolong its service life. To this aim, the calcium alginate capsules encapsulating rejuvenator were manufactured and proved to have sufficient thermal stability and mechanical resistance to survive the asphalt production and compaction...
conference paper 2018
document
Chang, Z. (author), Wan, Z. (author), Xu, Y. (author), Schlangen, E. (author), Šavija, B. (author)
Extrusion-based 3D concrete printing (3DCP) results in deposited materials with complex microstructures that have high porosity and distinct anisotropy. Due to the material heterogeneity and rapid growth of cracks, fracture analysis in these air-void structures is often complex, resulting in a high computational cost. This study proposes a...
journal article 2022
document
Xu, S. (author), Liu, X. (author), Tabakovic, A. (author), Schlangen, E. (author)
Microwave heating has been shown to be an effective method of heating asphalt concrete and in turn healing the damage. As such, microwave heating holds great potential in rapid (1–3 min) and effective damage healing, resulting in improvement in the service life, safety, and sustainability of asphalt pavement. This study focused on the microwave...
journal article 2021
document
Xu, Y. (author), Schlangen, E. (author), Šavija, B. (author)
Door toepassing van 3D-printtechnieken kunnen cementgebonden materialen worden ontwikkeld met een bijzondere, niet-homogene interne structuur. Deze materialen kunnen auxetisch gedrag vertonen: ze zetten zijdelings uit (worden dikker) wanneer ze worden uitgerekt en ze trekken zijdelings samen als ze worden samengeperst. Aan de TU Delft is...
journal article 2020
document
Xu, S. (author), Liu, X. (author), Tabakovic, A. (author), Schlangen, E. (author)
Self-healing asphalt, aimed to produce a sustainable asphalt pavement using green technology, has been studied in the past two decades. Technologies including encapsulated rejuvenator and induction heating have been proposed, demonstrated in the laboratory, and gradually evaluated in field application. This paper looks into the synergy effect...
journal article 2020
document
Zhang, H. (author), Xu, Y. (author), Gan, Y. (author), Chang, Z. (author), Schlangen, E. (author), Šavija, B. (author)
The aim of this work is to investigate the mechanical performance of hardened cement paste (HCP) under compression at the micrometre length scale. In order to achieve this, both experimental and numerical approaches were applied. In the experimental part, micrometre sized HCP specimens were fabricated and subjected to uniaxial compression by...
journal article 2019
document
Xu, S. (author), Liu, X. (author), Tabakovic, A. (author), Schlangen, E. (author)
Self-healing asphalt, which is designed to achieve autonomic damage repair in asphalt pavement, offers a great life-extension prospect and therefore not only reduces pavement maintenance costs but also saves energy and reduces CO<sub>2</sub> emissions. The combined asphalt self-healing system, incorporating both encapsulated rejuvenator and...
journal article 2021
document
Chang, Z. (author), Xu, Y. (author), Chen, Y. (author), Gan, Y. (author), Schlangen, E. (author), Šavija, B. (author)
In this work, the lattice model is applied to study the printing process and quantify the buildability (i.e., the maximum height that can be printed) for 3D concrete printing (3DCP). The model simulates structural failure by incorporating an element birth technique, time-dependent stiffness and strength, printing velocity, non-uniform...
journal article 2021
document
Gan, Y. (author), Zhang, Hongzhi (author), Zhang, Y. (author), Xu, Y. (author), Schlangen, E. (author), van Breugel, K. (author), Šavija, B. (author)
This study presents an experimental investigation of fatigue properties of cement paste at the microscale. A strong size dependence is found for the flexural fatigue life of the cement paste specimen. Microscopic observations on the fractured surfaces suggest that there is a higher density of nano-scale cracks generated during the fatigue...
journal article 2021
document
Xu, Y. (author), Gan, Y. (author), Chang, Z. (author), Wan, Z. (author), Schlangen, E. (author), Šavija, B. (author)
Tailoring lattice structures is a commonly used method to develop lattice materials with desired mechanical properties. However, for cementitious lattice materials, besides the macroscopic lattice structure, the multi-phase microstructure of cement paste may have substantial impact on the mechanical responses. Therefore, this work proposes a...
journal article 2022
document
Wan, Z. (author), Xu, Y. (author), He, S. (author), Schlangen, E. (author), Šavija, B. (author)
This paper presents a state-of-the-art review on the application of additive manufacturing (AM) in self-healing cementitious materials. AM has been utilized in self-healing cementitious materials in three ways: (1) concrete with 3D-printed capsules/vasculatures; (2) 3D concrete printing (3DCP) with fibers or supplementary cementitious...
journal article 2024
document
Xu, S. (author), Liu, X. (author), Tabakovic, A. (author), Lin, P. (author), Zhang, Y. (author), Nahar, S. (author), Lommerts, B. J. (author), Schlangen, E. (author)
Rejuvenator encapsulation technique showed great potential for extrinsic asphalt pavement damage healing. Once the capsules are embedded within asphalt pavement, the healing is activated on-demand via progressing microcrack. When the microcrack encounters the capsule, the fracture energy at the tip opens the capsule and releases the...
journal article 2021
document
Xie, J. (author), Xu, Y. (author), Wan, Z. (author), Ghaderiaram, A. (author), Schlangen, E. (author), Šavija, B. (author)
The high deformation capacity of auxetic cementitious cellular composites (ACCCs) makes them promising for strain-based energy harvesting applications in infrastructure. In this study, a novel piezoelectric energy harvester (PEH) with ACCCs and surface-mounted PVDF film based on strain-induced piezoelectric mechanisms has been designed,...
journal article 2023
document
Chang, Z. (author), Liang, M. (author), Xu, Y. (author), Schlangen, E. (author), Šavija, B. (author)
This research studies the impact of localized damage and deformed printing geometry on the structural failure of plastic collapse for 3D concrete printing (3DCP) using the lattice model. Two different approaches are utilized for buildability quantification: the (previously developed) load-unload method, which updates and relaxes the printing...
journal article 2022
document
Xu, S. (author), Tabakovic, A. (author), Schlangen, E. (author), Liu, X. (author)
Researchers have demonstrated that the rejuvenator encapsulation method is a promising autonomic self-healing approach for asphalt pavements, where by the self-healing system improves the healing capacity of an asphalt pavement mix. However, potentially high environmental risk via leaching of hazardous chemicals such as melamine formaldehyde...
journal article 2018
Searched for: +
(1 - 20 of 33)

Pages