Searched for: +
(1 - 4 of 4)
document
Sun, Yubo (author), Ghorbani, Saeid (author), Ye, G. (author), De Schutter, Geert (author)
Alkali-activated material (AAM) is developed as a green alternative binder to replace Portland cement (PC) in the construction field. However, the large-scale application with AAM concrete is limited so far, with the insufficient knowledge of rheological behavior being a major obstruct. Thixotropy of concrete is of great interest, which can...
book chapter 2023
document
Liang, M. (author), Schlangen, E. (author), Šavija, B. (author)
Stress evolution of restrained concrete is directly related to early-age cracking (EAC) potential of concrete, which is a tricky problem that often happens in engineering practice. Due to the global objective of carbon reduction, Ground granulated blast furnace slag (GGBFS) concrete has become a more promising binder comparing with Ordinary...
book chapter 2023
document
Schlangen, E. (author), Liang, M. (author), Šavija, B. (author)
The study aims to investigate the mechanism of early-age cracks in different massive concrete structures (i.e. tunnels, bridge foundations and underground parking garages), with the objective of answering the following three specific questions: <br/><br/>1) How does the parameters of concrete proportion mix (e.g. w/c ratio, cementitious...
book chapter 2022
document
Li, Z. (author), Zhang, Shizhe (author), Liang, X. (author), Kostiuchenko, A. (author), Ye, G. (author)
Alkali activated concrete (AAC) has not received broader industry acceptance, one reason of which lies in the uncertainties in the durability against shrinkage and potential cracking. Many studies reported that AAC exhibit larger autogenous shrinkage than OPC concrete. However, it is unable to deduce that AAC should show higher cracking...
book chapter 2021
Searched for: +
(1 - 4 of 4)