Searched for: +
(1 - 3 of 3)
document
Li, Z. (author), Zhang, Shizhe (author), Liang, X. (author), Kostiuchenko, A. (author), Ye, G. (author)
Alkali activated concrete (AAC) has not received broader industry acceptance, one reason of which lies in the uncertainties in the durability against shrinkage and potential cracking. Many studies reported that AAC exhibit larger autogenous shrinkage than OPC concrete. However, it is unable to deduce that AAC should show higher cracking...
book chapter 2021
document
Li, Z. (author), Zhang, Shizhe (author), Liang, X. (author), Ye, G. (author)
This study aims to investigate the cracking potential of alkali-activated slag (AAS) and alkali-activated slag-fly ash (AASF) concrete subjected to restrained autogenous shrinkage. Temperature Stress Testing Machine (TSTM) is utilized, for the first time, to monitor the stress evolution and to measure the cracking time of alkali-activated...
journal article 2020
document
Li, Z. (author), Liu, Jiahua (author), Ye, G. (author)
This study investigates the drying shrinkage and the shrinkage-induced stress of alkali-activated blast furnace slag and fly ash concrete (AC) in comparison with ordinary Portland cement concrete (OC). For samples that were dried from 1 day after casting, the drying shrinkage of AC was much higher than that of OC. For samples that were stored...
journal article 2019