Searched for: +
(1 - 7 of 7)
document
Sangadji, S. (author), Wiktor, V.A.C. (author), Jonkers, H.M. (author), Schlangen, E. (author)
Bacteria induced calcium carbonate precipitation based on metabolic conversion of nutrients has been acknowledged for having potentials in self-healing cement-based materials. Recent studies have shown the development of bacteria-based repair solution (liquid) for concrete surface repair. This article demonstrates the feasible application of...
conference paper 2017
document
Tziviloglou, E. (author), Wiktor, V.A.C. (author), Jonkers, H.M. (author), Schlangen, E. (author)
The innovative technology of self-healing concrete allows the material to repair the open micro-cracks that can endanger the structure’s durability, due to ingress of aggressive liquids. Various concepts of self-healing concrete use encapsulation techniques, in order to immobilize and protect the healing agent during mixing and setting. In this...
conference paper 2015
document
Palin, D. (author), Thijssen, A. (author), Wiktor, V. (author), Jonkers, H.M. (author), Schlangen, H.E.J.G. (author)
Ordinary Portland cement (OPC) mortar specimens submerged in sea-water were analysed through environmental scanning electron microscopy (ESEM) in back scattered electron (BSE) mode and nano-scratching. Results from both sets of analysis show the presence of distinct phases associated with aragonite, brucite and cement paste. Phases associated...
conference paper 2015
document
Wiktor, V. (author), Sangadji, S. (author), Jonkers, H.M. (author), Schlangen, H.E.J.G. (author)
Bacterially induced calcium carbonate precipitation has received considerable attention for its potential application in enforcing or repairing construction material. The mechanism of bacterially mediated calcite precipitation in those studies is primarily based on the enzymatic hydrolysis of urea. Besides calcite precipitation, this reaction...
conference paper 2013
document
Sangadji, S. (author), Wiktor, V.A.C. (author), Jonkers, H.M. (author), Schlangen, H.E.J.G. (author)
Bacteria induced calcite precipitation has been proven to be effective in making concrete structure self-healing. In Microlab TU Delft, the concept has been enhanced by developing a liquid bacteria-based concrete repair system. The solution contains calcite precipitating bacteria, nutrients and buffer compound which may demonstrate high...
conference paper 2013
document
Sangadji, S. (author), Wiktor, V.A.C. (author), Jonkers, H.M. (author), Schlangen, H.E.J.G. (author)
Bacteria induced calcite precipitation has been proven to be effective in making concrete structure self-healing. In Microlab TU Delft, the concept has been enhanced by developing a liquid bacteria-based concrete repair system. The solution contains calcite precipitating bacteria, nutrients and buffer compound which may demonstrate high...
conference paper 2013
document
Wiktor, V.A.C. (author), Sangadji, S. (author), Jonkers, H.M. (author), Schlangen, H.E.J.G. (author)
Bacterially induced calcium carbonate precipitation has received considerable attention for its potential application in enforcing or repairing construction material. The mechanism of bacterially mediated calcite precipitation in those studies is primarily based on the enzymatic hydrolysis of urea. Besides calcite precipitation, this reaction...
conference paper 2013
Searched for: +
(1 - 7 of 7)