Searched for: +
(1 - 4 of 4)
document
Li, Z. (author), Chen, Y. (author), Provis, John L. (author), Cizer, Özlem (author), Ye, G. (author)
This paper provides a critical review on autogenous shrinkage of alkali-activated slag (AAS). It is reported that AAS paste, mortar, and concrete generally show larger autogenous shrinkage than Portland cement (PC) counterparts. Self-desiccation is the main driving force of the autogenous shrinkage of hardened AAS, but other mechanisms also...
review 2023
document
Li, Z. (author), Lu, T. (author), Chen, Y. (author), Wu, B. (author), Ye, G. (author)
This study aims to predict the autogenous shrinkage of alkali-activated concrete (AAC) based on slag and fly ash. A variety of analytical and numerical models are available for the prediction of autogenous shrinkage of ordinary Portland cement (OPC) concrete, but these models are found to show dramatic discrepancies when applied for AAC due...
journal article 2021
document
Li, Z. (author), Delsaute, Brice (author), Lu, Tianshi (author), Kostiuchenko, A. (author), Staquet, Stéphanie (author), Ye, G. (author)
This study aims to compare the developments of mechanical properties and autogenous shrinkage related properties of alkali-activated materials-based concrete (AC) and ordinary Portland cement-based concrete (OC) against curing age and degree of reaction. Temperature Stress Testing Machines are utilized to monitor the evolution of the internal...
journal article 2021
document
Li, Z. (author), Zhang, Shizhe (author), Liang, X. (author), Granja, José (author), Azenha, Miguel (author), Ye, G. (author)
This study investigates the influences of internal curing on reducing the autogenous shrinkage of alkali-activated slag/fly ash (AASF) paste. The influences of internal curing with superabsorbent polymers (SAPs) on the reactions and microstructure of AASF paste are investigated. It is found that the SAPs absorb liquid mainly before the...
journal article 2020
Searched for: +
(1 - 4 of 4)