Searched for: +
(1 - 8 of 8)
document
Lukovic, M. (author), Huang, Z. (author), Hordijk, D.A. (author), Schlangen, E. (author)
Strain Hardening Cementitious Composite (SHCC) is an innovative material which, due to the special material composition and the addition of fibres, exhibits a controlled microcracking behaviour under tensile stresses. As such it might be a promising material for improvement of durability of concrete structures.<br/>An experimental study was...
conference paper 2018
document
Lukovic, M. (author), Hordijk, D.A. (author), Huang, Z. (author), Schlangen, E. (author)
Strain Hardening Cementitious Composite (SHCC) is an innovative material which, due to the special material composition and the addition of fibres, exhibits a controlled microcracking behaviour under tensile stresses. As such it might be a promising material for improvement of durability of concrete structures.<br/><br/>An experimental study was...
journal article 2019
document
Gao, Peng (author), Chen, Yang (author), Huang, Haoliang (author), Qian, Zhiwei (author), Schlangen, E. (author), Wei, Jiangxiong (author), Yu, Qijun (author)
Concrete generally deforms and cracks in a non-uniform manner under drying-induced stress. This study used the lattice fracture model to simulate the drying-induced non-uniform deformations, stresses, and micro-crack propagation in concrete. Experiments were designed to validate the lattice fracture model, wherein the drying-induced non...
journal article 2020
document
Gao, Peng (author), Chen, Yang (author), Huang, Haoliang (author), Qian, Zhiwei (author), Schlangen, E. (author), Wei, Jiangxiong (author), Yu, Qijun (author)
To assess the effect of relative humidity (RH) on drying-induced damage in concrete, the non-uniform strains and microcracks in concrete under different RH conditions were obtained using the digital image correlation (DIC) technique and lattice fracture model. The simulated non-uniform displacements were consistent with those captured using...
journal article 2020
document
Gao, Peng (author), Chen, Yang (author), Huang, Haoliang (author), Qian, Zhiwei (author), Schlangen, E. (author), Wei, Jiangxiong (author), Yu, Qijun (author)
Non-uniform stresses, strains and microcracking of the concretes with three coarse aggregate sizes (5–10 mm, 10–16 mm, 16–20 mm) dried under 40% relative humidity (RH) for 60 days were quantified using digital image correlation and lattice fracture modelling. The influencing mechanism of coarse aggregate size on the drying-induced...
journal article 2021
document
Huang, Y. (author), Grunewald, S. (author), Schlangen, E. (author), Lukovic, M. (author)
Ultra-High Performance Fiber-Reinforced Concrete (UHPFRC) is, due to its superior mechanical properties and low permeability, a promising material for the restoration and improvement of the mechanical resistance and durability of existing Reinforced Concrete (RC) structures. This paper reviews the strengthening applications of UHPFRC in flexure,...
review 2022
document
Gao, Peng (author), Ye, G. (author), Huang, Haoliang (author), Qian, Zhiwei (author), Schlangen, E. (author), Wei, Jiangxiong (author), Yu, Qijun (author)
A structure-based modelling framework was established to simulate the three-dimensional autogenous shrinkage of cement paste. A cement hydration model, HYMOSTRUC3D-E, was used to obtain the microstructures and ionic concentrations of the cement paste. A lattice fracture model based on the effective stress and effective modulus was used to...
journal article 2022
document
Huang, Y. (author), Schlangen, E. (author), Lukovic, M. (author)
Ultra-high performance fiber-reinforced concrete (UHPFRC) exhibits high compressive and tensile strength together with outstanding durability. Due to these superior properties, UHPFRC is promising for retrofitting existing reinforced concrete (RC) bridges. While research and on-site applications show the significant improvement of RC structures...
conference paper 2023
Searched for: +
(1 - 8 of 8)