Searched for: +
(1 - 3 of 3)
document
Chen, Y. (author), Zhang, Y. (author), He, S. (author), Liang, X. (author), Schlangen, E. (author), Copuroglu, Oguzhan (author)
In 3D concrete printing, fast structuration is a prerequisite for ideal buildability. This paper aims to study the impact of inorganic additives, i.e., CaCl<sub>2</sub> and gypsum, on structural build-up and very early-age hydration of limestone-calcined clay-cement (LC3) pastes within the first 70–80 min. Results show that, increasing the...
journal article 2023
document
Chen, Y. (author), Liang, M. (author), Zhang, Y. (author), Li, Z. (author), Šavija, B. (author), Schlangen, E. (author), Copuroglu, Oguzhan (author)
Autogenous shrinkage may be a critical issue concerning the use of limestone-calcined clay-cement (LC3) in high-performance concrete and 3D printable cementitious materials, which have relatively low water to binder (W/B) ratio. Adding an internal curing agent, i.e., superabsorbent polymer (SAP), could be a viable solution in this context....
journal article 2023
document
Chen, Y. (author), Zhang, Y. (author), He, S. (author), Liang, M. (author), Zhang, Yamei (author), Schlangen, E. (author), Copuroglu, Oguzhan (author)
Limestone-calcined clay-cement (LC3), as one of the most promising sustainable cements, has been under development over the past decade. However, many uncertainties remain regarding its rheological behaviors, such as the metakaolin content of calcined clay. This study aims to investigate the effect of increasing the content of fine-grained...
journal article 2023