Searched for: +
(1 - 3 of 3)
document
Pan, S. (author), Gürleyük, C. (author), Pimenta, Matheus F. (author), Makinwa, K.A.A. (author)
Resistor-based temperature sensors can achieve much higher resolution and energy efficiency than conventional BJT-based sensors [1], but they typically occupy more area (&gt; 0.25 mm <sup>2</sup> ) and have lower operating temperatures (le 125 {circ} {C}) [2]-[4]. This work describes a 0.12mm <sup>2</sup> resistor-based sensor that uses a...
conference paper 2019
document
Gürleyük, C. (author), Pedala', L. (author), Sebastiano, F. (author), Makinwa, K.A.A. (author)
To comply with wired communication standards such as USB, SATA and PCI/PCI-E, systems-on-chip require frequency references with better than 300ppm accuracy. LC-based references achieve 100ppm accuracy [1], but suffer from high power consumption (∼20mW). Thermal diffusivity (TD) references require less power (∼2mW), at the expense of less...
conference paper 2018
document
Pan, S. (author), Jiang, H. (author), Makinwa, K.A.A. (author)
This paper presents the most energy-efficient CMOS temperature sensor ever reported, with a resolution FoM of 49fJ·K2, 2.7× better than the state-of-the-art. It consists of a Wheatstone bridge made from poly-silicon resistors, which is readout by a 2nd-order Continuous-Time Delta-Sigma modulator (CTDSM). This approach leads to a high resolution ...
conference paper 2017