Searched for: +
(1 - 4 of 4)
document
Tabakovic, A. (author), Mohan, Joseph (author), Karač, Aleksandar (author)
This paper explores the potential use of conductive alginate capsules encapsulating a bitumen rejuvenator as a new extrinsic self-healing asphalt method. The capsules combine two existing self-healing asphalt technologies: (1) rejuvenator encapsulation and (2) induction heating to create a self-healing system that will provide rapid and...
journal article 2021
document
Xu, S. (author), Liu, X. (author), Tabaković, Amir (author), Schlangen, E. (author)
Improving the healing capacity of asphalt is proving to be an effective method to prolong the service life of an asphalt pavement. The calcium alginate capsules encapsulating rejuvenator have been developed and proved to provide successful localized crack healing in asphalt mastic. However, it is not known whether this self-healing asphalt...
journal article 2019
document
Tabakovic, A. (author), Schuyffel, L.S. (author), Karač, Aleksandar (author), Schlangen, E. (author)
This paper explores the potential methods for evaluating a healing system for asphalt pavements. The healing system under investigation involves compartmented calcium-alginate fibres encapsulating an asphalt binder healing agent (rejuvenator). This system presents a novel method of incorporating rejuvenators into asphalt pavement mixtures....
journal article 2017
document
Tabakovic, A. (author), Braak, Dirk (author), van Gerwen, Mark (author), Copuroglu, Oguzhan (author), Post, W. (author), Garcia, Santiago J. (author), Schlangen, E. (author)
This article presents development of a novel self-healing technology for asphalt pavements, where asphalt binder rejuvenator is encapsulated within the compartmented alginate fibres. The key objective of the study was to optimise the compartmented alginate fibre design, i.e., maximising amount of rejuvenator encapsulated within the fibre. The...
journal article 2017
Searched for: +
(1 - 4 of 4)