Searched for: +
(1 - 3 of 3)
document
Chang, Z. (author), Liang, M. (author), He, S. (author), Schlangen, E. (author), Šavija, B. (author)
We propose a new numerical method to analyze the early-age creep of 3D printed segments with the consideration of stress history. The integral creep strain evaluation formula is first expressed in a summation form using superposition principle. The experimentally derived creep compliance surface is then employed to calculate the creep strain...
journal article 2023
document
Chang, Z. (author), Liang, M. (author), Chen, Y. (author), Schlangen, E. (author), Šavija, B. (author)
Cementitious materials may exhibit significant creep at very early age. This is potentially important for concrete 3D printing, where the material is progressively loaded even before it sets. However, does creep actually affect the buildability of 3D printed concrete? Herein, the influence of early-age creep on the buildability of 3D printed...
journal article 2023
document
Chang, Z. (author), Liang, M. (author), Xu, Y. (author), Wan, Z. (author), Schlangen, E. (author), Šavija, B. (author)
In this study, an experimental setup to characterize the early-age creep of 3D printable mortar was proposed. The testing protocol comprises quasi-static compressive loading-unloading cycles, with 180-s holding periods in between. An analytical model based on a double power law was used to predict creep compliance with hardening time and...
journal article 2023