Searched for: +
(1 - 7 of 7)
document
Lawrie, W.I.L. (author)
Quantum computers based on semiconductor quantum dots are proving promising contenders for large scale quantum information processing. In particular, group IV based semiconductor hosts containing an abundance of nuclear spin-zero isotopes have made considerable headway into fulfilling the requirements of a universal quantum computer. Silicon (Si...
doctoral thesis 2022
document
Xue, X. (author)
Benchmarking the performance of a quantum computer is of key importance in identifying and reducing the error sources, and therefore in achieving fault-tolerant quantum computation. In the last decade, qubits made of electron spins in silicon emerged as promising candidates for practical quantum computers. To understand their physical properties...
doctoral thesis 2022
document
van Diepen, C.J. (author)
More is more applies in particular to systems with interacting parts. These interactions enable the emergence of collective behaviour. Examples can be found among the behaviour of animals, such as the V-shaped formation of migrating geese and the flight of a flock of starlings. More examples are found among the electromagnetic properties of...
doctoral thesis 2021
document
Eenink, H.G.J. (author)
The understanding of quantum mechanics enabled the development of technology such as transistors and has been the foundation of today’s information age. Actively using quantum mechanics to build quantum technology may cause a second revolution in handling information. However, to execute meaningful algorithms, largescale quantum computers have...
doctoral thesis 2021
document
Hendrickx, N.W. (author)
Spin quantum bits (qubits) defined in semiconductor quantum dots have emerged as a promising platform for quantum information processing. Various semiconductor materials have been studied as a host for the spin qubit. Over the last decade, research focussed on the group‐IV semiconductor silicon, owing to its compatibility with semiconductor...
doctoral thesis 2021
document
Nowack, K.C. (author)
doctoral thesis 2009
document
Elzerman, J.M. (author)
In this thesis, the spin and charge degree of freedom of electrons in semiconductor lateral and vertical quantum dots are experimentally investigated. The lateral quantum dot devices are defined in a two-dimensional electron gas (2DEG) below the surface of a GaAs/AlGaAs heterostructure, by metallic surface gates. The vertical quantum dots are...
doctoral thesis 2004
Searched for: +
(1 - 7 of 7)