Searched for: +
(1 - 6 of 6)
document
van Overmeir, A.L. (author), Chaves Figueiredo, S. (author), Šavija, B. (author), Bos, Freek P. (author), Schlangen, E. (author)
Since the advent of three-dimensional concrete printing (3DCP), several studies have shown the potential of strain hardening cementitious composites (SHCC) as a self-reinforcing printable mortar. However, only a few papers focus on achieving sufficient buildability when developing printable SHCC. This study investigates the role of the...
journal article 2022
document
Romero Rodriguez, C. (author), França de Mendonça Filho, F. (author), Chaves Figueiredo, S. (author), Schlangen, E. (author), Šavija, B. (author)
Recent studies have shown that concrete containing Phase Change Materials (PCM) with low transition temperatures may reduce the number of freeze/thaw cycles suffered by the cementitious composite in temperate climates. Nevertheless, the positive influence of such admixtures on the frost resistance of cement-based materials has not been...
journal article 2020
document
Xu, Y. (author), Zhang, H. (author), Šavija, B. (author), Chaves Figueiredo, S. (author), Schlangen, E. (author)
A method is presented to model deformation and fracture behavior of 3D printed disordered lattice materials under uniaxial tensile load. A lattice model was used to predict crack pattern and load-displacement response of the printed lattice materials. To include the influence of typical layered structures of 3D printed materials in the...
journal article 2019
document
Romero Rodriguez, C. (author), Chaves Figueiredo, S. (author), Deprez, M. (author), Snoeck, D. (author), Schlangen, E. (author), Šavija, B. (author)
Recently the concept of crack self-sealing has been investigated as a method to prevent degradation and/or loss of functionality of cracked concrete elements. To obtain self-sealing effect in the crack, water swelling admixtures such as superabsorbent polymers (SAP) are added into the cementitious mix. In order to design such self-sealing...
journal article 2019
document
Šavija, B. (author), Lukovic, M. (author), Kotteman, Geerte (author), Chaves Figueiredo, S. (author), França de Mendonça Filho, F. (author), Schlangen, E. (author)
Abstract In the past two decades, much research has been devoted to overcoming the inherent brittleness of cementitious materials. To that end, several solutions have been proposed, mainly utilizing fibres. One of the most promising classes of materials is strain hardening cementitious composite (SHCC). It utilizes PVA fibres, and it is...
journal article 2017
document
Zhang, H. (author), Šavija, B. (author), Chaves Figueiredo, S. (author), Lukovic, M. (author), Schlangen, E. (author)
This work aims to provide a method for numerically and experimentally investigating the fracture mechanism of cement paste at the microscale. For this purpose, a new procedure was proposed to prepare micro cement paste cubes (100 × 100 × 100 µm3) and beams with a square cross section of 400 × 400 µm2. By loading the cubes to failure with a...
journal article 2016
Searched for: +
(1 - 6 of 6)