Searched for: +
(1 - 20 of 38)

Pages

document
Zhang, H. (author), Jin, Zuquan (author), Jiang, Nengdong (author), Ge, Zhi (author), Schlangen, E. (author), Ling, Yifeng (author), Šavija, B. (author), Wang, Zheng (author)
The classically lattice model assumes the local elements behave elastic brittle, neglecting the ductility of the mortar matrix. This leads to the simulated load⁃displacement response more brittle than the realistic. To solve the aforementioned issue, a piece⁃wise approach was introduced to describe the elastic⁃plastic constitutive relation of...
journal article 2023
document
Liang, M. (author), Zhang, Y. (author), He, S. (author), Chen, Y. (author), Schlangen, E. (author), Šavija, B. (author)
This study investigated the evolution process of high-volume slag cement (HVSC) paste from a chemo-mechanical standpoint. HVSC specimens with a 70 w.t. % slag replacement rate were studied at various ages. Evolution of phase assemblage, microstructure development, and micromechanical properties were analyzed using TGA/XRD/MIP/SEM-EDS and nano...
journal article 2023
document
Liang, M. (author), He, S. (author), Gan, Yidong (author), Zhang, Hongzhi (author), Chang, Z. (author), Schlangen, E. (author), Šavija, B. (author)
This paper employs computer vision techniques to predict the micromechanical properties (i.e., elastic modulus and hardness) of cement paste based on an input of Backscattered Electron (BSE) images. A dataset comprising 40,000 nanoindentation tests and 40,000 BSE micrographs was built by express nanoindentation test and Scanning Electron...
journal article 2023
document
Liang, M. (author), Chang, Z. (author), Zhang, Y. (author), Cheng, H. (author), He, S. (author), Schlangen, E. (author), Šavija, B. (author)
This study aims to experimentally investigate the autogenous deformation and the stress evolution in restrained high-volume ground granulated blast furnace slag (GGBFS) concrete. The Temperature Stress Testing Machine (TSTM) and Autogenous Deformation Testing Machine (ADTM) were used to study the macro-scale autogenous deformation and stress...
journal article 2023
document
Chen, Y. (author), Liang, M. (author), Zhang, Y. (author), Li, Z. (author), Šavija, B. (author), Schlangen, E. (author), Copuroglu, Oguzhan (author)
Autogenous shrinkage may be a critical issue concerning the use of limestone-calcined clay-cement (LC3) in high-performance concrete and 3D printable cementitious materials, which have relatively low water to binder (W/B) ratio. Adding an internal curing agent, i.e., superabsorbent polymer (SAP), could be a viable solution in this context....
journal article 2023
document
Chang, Z. (author), Zhang, Hongzhi (author), Liang, M. (author), Schlangen, E. (author), Šavija, B. (author)
This paper explores buildability quantification of randomly meshed 3D printed concrete objects by considering structural failure by elastic buckling. The newly proposed model considers the most relevant printing parameters, including time-dependent material behaviors, printing velocity, localized damage and influence of sequential printing...
journal article 2022
document
Gan, Y. (author), Zhang, Hongzhi (author), Liang, M. (author), Zhang, Y. (author), Schlangen, E. (author), van Breugel, K. (author), Šavija, B. (author)
In this study, the flexural strength and fatigue properties of interfacial transition zone (ITZ) were experimentally investigated at the micrometre length scale. The hardened cement paste cantilevers (150 × 150 × 750 μm<sup>3</sup>) attached to a quartzite aggregate surface were prepared and tested under the monotonic and cyclic load using a...
journal article 2022
document
Sun, Renjuan (author), Han, Lebing (author), Zhang, Hongzhi (author), Ge, Zhi (author), Guan, Yanhua (author), Ling, Yifeng (author), Schlangen, E. (author), Šavija, B. (author)
This paper presents a study on cracking characterization of engineered cementitious composites (ECC) under flexural cyclic load using digital image correlation (DIC) technique. Five stress levels, namely 0.65, 0.75, 0.8, 0.85 and 0.9 of the flexural strength, were applied. Strain map at the side surface was obtained by DIC and used to drive...
journal article 2022
document
Zhang, H. (author), Schlangen, E. (author), Ge, Z. (author), Šavija, B. (author)
Properties of concrete are, to a large extent, dependent on the properties of its binding constituent, hydrated cement paste. Therefore, knowledge of properties of hydrated cement paste is crucial for predicting concrete behaviour. This paper presents an experimentally informed approach for modelling elastic and transport properties of cement...
conference paper 2021
document
Gan, Y. (author), Romero Rodriguez, C. (author), Zhang, Hongzhi (author), Schlangen, E. (author), van Breugel, K. (author), Šavija, B. (author)
This paper presents a method to numerically investigate the microstructural effect on the creep behavior of cement paste at the microscale. The lattice fracture model is extended to consider local time-dependent deformations of calcium-silicate-hydrate phases in the cement paste by imposing local forces. The term “experimentally informed...
journal article 2021
document
Zhang, H. (author), Schlangen, E. (author), Ge, Zhi (author), Šavija, B. (author)
Properties of concrete are, to a large extent, dependent on the properties of its binding constituent, hydrated cement paste. Therefore, knowledge of properties of hydrated cement paste is crucial for predicting concrete behaviour. This paper presents an experimentally informed approach for modelling elastic and transport properties of cement...
conference paper 2021
document
Zhang, Hongzhi (author), Yuan, Huaqiang (author), Ge, Zhi (author), Wu, Jiajie (author), Fang, Cheng (author), Schlangen, E. (author), Šavija, B. (author)
Clay brick is one of the major components of demolition waste, which is generally landfilled. Effective and new uses of recycled clay brick may provide sustainability benefits in terms of landfill reduction. Therefore, this research aims at applying Recycled fine clay brick aggregates (RFCBA) with sizes from 0.075 mm–4.75 mm to prepare Self...
journal article 2021
document
Gan, Y. (author), Zhang, Hongzhi (author), Liang, M. (author), Schlangen, E. (author), van Breugel, K. (author), Šavija, B. (author)
In this study, a numerical model using a 2D lattice network is developed to investigate the fatigue behaviour of cement paste at the microscale. Images of 2D microstructures of cement pastes obtained from XCT tests are used as inputs and mapped to the lattice model. Different local mechanical and fatigue properties are assigned to different...
journal article 2021
document
Gan, Y. (author), Zhang, Hongzhi (author), Zhang, Y. (author), Xu, Y. (author), Schlangen, E. (author), van Breugel, K. (author), Šavija, B. (author)
This study presents an experimental investigation of fatigue properties of cement paste at the microscale. A strong size dependence is found for the flexural fatigue life of the cement paste specimen. Microscopic observations on the fractured surfaces suggest that there is a higher density of nano-scale cracks generated during the fatigue...
journal article 2021
document
Xu, Y. (author), Zhang, H. (author), Schlangen, E. (author), Lukovic, M. (author), Šavija, B. (author)
Auxetic behavior refers to material with negative Poisson's ratio. In this research, a new type of cementitious auxetic material is developed. A novel crack bridging auxetic mechanism is discovered which is in contrast with a local buckling mechanism commonly employed to trigger auxetic behavior. Taking advantage of 3D printing techniques,...
journal article 2020
document
Zhang, H. (author), Xu, Y. (author), Gan, Y. (author), Chang, Z. (author), Schlangen, E. (author), Šavija, B. (author)
Application of micromechanical modelling of hydrated cement paste (HCP) gains more and more interests in the field of cementitious materials. One of the most promising approaches is the use of so-called microstructure informed micromechanical models, which provides a direct link between microstructure and mechanical properties. In order to...
journal article 2020
document
Zhang, H. (author), Xu, Y. (author), Gan, Y. (author), Schlangen, E. (author), Šavija, B. (author)
This paper presents a validation process of the developed multi-scale modelling scheme on mortar composites. Special attention was paid to make the material structure of real and virtual mortar specimens comparable at the meso-scale. The input mechanical parameters of cement paste (both bulk cement paste and interfacial transition zone) at the...
journal article 2020
document
Chang, Z. (author), Zhang, Hongzhi (author), Schlangen, E. (author), Šavija, B. (author)
The lattice fracture model is a discrete model that can simulate the fracture process of cementitious materials. In this work, the Delft lattice fracture model is reviewed and utilized for fracture analysis. First, a systematic calibration procedure that relies on the combination of two uniaxial tensile tests is proposed to determine the input...
journal article 2020
document
Jiang, Nengdong (author), Zhang, Hongzhi (author), Chang, Z. (author), Schlangen, E. (author), Ge, Zhi (author), Šavija, B. (author)
A combination of laboratory experiments and numerical simulations at multiple length scales can provide in-depth understanding of fracture behaviour of hydrated cement paste (HCP). To that end, the current work presents a numerical study on compressive failure of hydrated cement paste (HCP) at the micro-scale. Virtual specimens consisting of...
journal article 2020
document
Zhang, H. (author), Romero Rodriguez, C. (author), Dong, H. (author), Gan, Y. (author), Schlangen, E. (author), Šavija, B. (author)
Carbonation of hydrated cement paste (HCP) causes numerous chemo-mechanical changes in the microstructure, e.g., porosity, strength, elastic modulus, and permeability, which have a significant influence on the durability of concrete structures. Due to its complexity, much is still not understood about the process of carbonation of HCP. The...
journal article 2020
Searched for: +
(1 - 20 of 38)

Pages