Searched for: +
(1 - 20 of 24)

Pages

document
Ji, Y. (author), Chen, K. (author), Möller, M. (author), Vuik, Cornelis (author)
Constructing an analysis-suitable parameterization for the computational domain from its boundary representation plays a crucial role in the isogeometric design-through-analysis pipeline. PDE-based elliptic grid generation is an effective method for generating high-quality parameterizations with rapid convergence properties for the planar...
journal article 2023
document
Vijai Kumar, S. (author), Vuik, Cornelis (author), Möller, M. (author)
Various computational fluid dynamic simulations in engineering, such as external aerodynamics, only need the silhouette of an input geometry. Often, it is a laborious process that can take up many human hours. In addition, the CAD geometries are too complex and contain intricate features and topological holes. We showcase an effortless way to...
journal article 2023
document
Tielen, R.P.W.M. (author), Möller, M. (author), Vuik, Cornelis (author)
The use of sequential time integration schemes becomes more and more the bottleneck within large-scale computations due to a stagnation of processor’s clock speeds. In this study, we combine the parallel-in-time Multigrid Reduction in Time method with a p-multigrid method to obtain a scalable solver specifically designed for Isogeometric...
journal article 2022
document
Tielen, R.P.W.M. (author), Möller, M. (author), Vuik, Cornelis (author)
Isogeometric Analysis (IgA) can be seen as the natural extension of the Finite Element Method (FEM) to high-order B-spline basis functions. Combined with a time inte- gration scheme within the method of lines, IgA has become a viable alternative to FEM for time-dependent problems. However, as processors' clock speeds are no longer increasing but...
conference paper 2022
document
Tielen, R.P.W.M. (author), Möller, M. (author), Vuik, Cornelis (author)
Since its introduction in [20], Isogeometric Analysis (IgA) has established itself as a viable alternative to the Finite Element Method (FEM). Solving the resulting linear systems of equations efficiently remains, however, challenging when high-order B-spline basis functions of order p> 1 are adopted for approximation. The use of...
book chapter 2022
document
Dwarka, V.N.S.R. (author), Tielen, R.P.W.M. (author), Möller, M. (author), Vuik, Cornelis (author)
Finding fast yet accurate numerical solutions to the Helmholtz equation remains a challenging task. The pollution error (i.e. the discrepancy between the numerical and analytical wave number k) requires the mesh resolution to be kept fine enough to obtain accurate solutions. A recent study showed that the use of Isogeometric Analysis (IgA)...
journal article 2021
document
Tielen, R.P.W.M. (author), Möller, M. (author), Vuik, Cornelis (author)
Isogeometric Analysis (IgA) can be considered as the natural extension of the Finite Element Method (FEM) to high-order B-spline basis functions. The development of efficient solvers for discretizations arising in IgA is a challenging task, as most (standard) iterative solvers have a detoriating performance for increasing values of the...
conference paper 2021
document
Hinz, J.P. (author), Möller, M. (author), Vuik, Cornelis (author)
The first step towards applying isogeometric analysis techniques to solve PDE problems on a given domain consists in generating an analysis-suitable mapping operator between parametric and physical domains with one or several patches from no more than a description of the boundary contours of the physical domain. A subclass of the multitude of...
conference paper 2021
document
Tielen, R.P.W.M. (author), Möller, M. (author), Vuik, Cornelis (author)
Isogeometric Analysis can be considered as the natural extension of the Finite Element Method (FEM) to higher-order spline based discretizations simplifying the treatment of complex geometries with curved boundaries. Finding a solution of the resulting linear systems of equations efficiently remains, however, a challenging task. Recently, p...
conference paper 2021
document
Hinz, J.P. (author), Jaeschke, Andrzej (author), Möller, M. (author), Vuik, Cornelis (author)
This paper proposes a shape optimization algorithm based on the principles of Isogeometric Analysis (IGA) in which the parameterization of the geometry enters the problem formulation as an additional PDE-constraint. Inspired by the isoparametric principle of IGA, the parameterization and the governing state equation are treated using the same...
journal article 2021
document
Wobbes, Elizaveta (author), Tielen, R.P.W.M. (author), Möller, M. (author), Vuik, Cornelis (author)
Both the material-point method (MPM) and optimal transportation meshfree (OTM) method have been developed to efficiently solve partial differential equations that are based on the conservation laws from continuum mechanics. However, the methods are derived in a different fashion and have been studied independently of one another. In this...
journal article 2020
document
Wobbes, E. D. (author), Möller, M. (author), Galavi, V. (author), Vuik, Cornelis (author)
The material point method (MPM) is an effective computational tool for simulating problems involving large deformations. However, its direct mapping of the material-point data to the background grid frequently leads to severe inaccuracies. The standard function reconstruction techniques can considerably decrease these errors, but do not...
conference paper 2020
document
Hinz, J.P. (author), Möller, M. (author), Vuik, Cornelis (author)
Isogeometric Analysis (IgA) has become an accepted framework for the mod-elling, simulation and optimization (MSO) of engineering processes. However, the fully automatized generation of analysis-suitable parameterizations of geometries as they arise in practical workflows is still a challenging task, which often requires application-specific...
conference paper 2020
document
Tielen, R.P.W.M. (author), Möller, M. (author), Göddeke, D. (author), Vuik, Cornelis (author)
Over the years, Isogeometric Analysis has shown to be a successful alternative to the Finite Element Method (FEM). However, solving the resulting linear systems of equations efficiently remains a challenging task. In this paper, we consider a p-multigrid method, in which coarsening is applied in the spline degree p instead of the mesh width h...
journal article 2020
document
Tran, Quoc-Anh (author), Wobbes, Elizaveta (author), Sołowski, Wojciech (author), Möller, M. (author), Vuik, Cornelis (author)
The paper shows a moving least squares reconstruction technique applied to the B-spline Material Point Method (B-spline MPM). It has been shown previously that B-spline MPM can reduce grid-crossing errors inherent in the original Material Point Method. However, in the large deformation regime where the gridcrossing occurs more frequently, the...
conference paper 2019
document
Tielen, R.P.W.M. (author), Möller, M. (author), Vuik, Cornelis (author)
The Material Point Method (MPM) has been applied successfully to problems in engineering which involve large deformations and history-dependent material behavior. However, the classical method suffers from some shortcomings which influence the quality of the numerical solution significantly. High-order B-spline basis functions solve the problem...
conference paper 2019
document
Wobbes, Elizaveta (author), Tielen, R.P.W.M. (author), Möller, M. (author), Vuik, Cornelis (author), Galavi, Vahid (author)
Both the Material Point Method (MPM) and meshfree schemes based on optimal transport theory have been developed for efficient and robust integration of the weak form equations originating from computational mechanics. Although the methods are derived in a different fashion, their algorithms share many similarities. In this paper, we outline the...
conference paper 2019
document
Wobbes, Elizaveta (author), Tielen, R.P.W.M. (author), Möller, M. (author), Vuik, Cornelis (author), Galavi, Vahid (author)
book chapter 2019
document
Wobbes, Elizaveta (author), Möller, M. (author), Galavi, Vahid (author), Vuik, Cornelis (author)
Within the standard material point method (MPM), the spatial errors are partially caused by the direct mapping of material-point data to the background grid. In order to reduce these errors, we introduced a novel technique that combines the least squares method with the Taylor basis functions, called the Taylor least squares (TLS), to...
journal article 2019
document
Möller, M. (author), Vuik, Cornelis (author)
The development of practical quantum computers that can be used to solve real-world problems is in full swing driven by the ambitious expectation that quantum supremacy will be able to outperform classical super-computers. Like with any emerging compute technology, it needs early adopters in the scientific computing community to identify...
journal article 2019
Searched for: +
(1 - 20 of 24)

Pages