Searched for: +
(1 - 7 of 7)
document
Rao, P.V. (author), Yin, F. (author), Grewe, V. (author), Yamashita, Hiroshi (author), Jöckel, Patrick (author), Matthes, Sigrun (author), Mertens, Mariano (author), Frömming, Christine (author)
Aviation contributes to 3.5% of anthropogenic climate change in terms of Effective Radiative Forcing (ERF) and 5% in terms of temperature change. Aviation climate impact is expected to increase rapidly due to the growth of air transport sector in most regions of the world and the effects of the COVID-19 pandemic are expected to only have a...
abstract 2022
document
Matthes, Sigrun (author), Lührs, Benjamin (author), Dahlmann, K. (author), Linke, F. (author), Grewe, V. (author), Yin, F. (author), Shine, K.P. (author)
Aviation can reduce its climate impact by controlling its CO2-emission and non-CO2 effects, e.g. aviation-induced contrail-cirrus and ozone caused by nitrogen oxide emissions. One option is the implementation of operational measures which aim to avoid those atmospheric regions that are in particular sensitive to non-CO2 aviation effects, e.g....
abstract 2020
document
Lührs, Benjamin (author), Linke, F. (author), Matthes, Sigrun (author), Grewe, V. (author), Yin, F. (author), Shine, K.P. (author)
Air traffic contributes to anthropogenic global warming by about 5% due to CO2 emissions (about 1/3) and non-CO2 effects (about 2/3) primarily caused by emissions of NOx and water vapour as well as the formation of contrails. Since aviation is expected to maintain its trend to grow over the next decades, mitigation measures are required...
abstract 2020
document
Grewe, V. (author), Matthes, Sigrun (author), Dahlmann, K. (author)
The contribution of aviation to anthropogenic climate change results from CO2 and non-CO2 emissions. Latter comprises emissions of nitrogen oxides, water vapour, and aerosols as well as contrail and contrail-cirrus effects. A series of updates can be noted in recent studies related to the effects of NOx-emissions; the inclusion of two physical...
abstract 2020
document
Yamashita, H. (author), Yin, F. (author), Grewe, V. (author), Jockel, P. (author), Matthes, Sigrun (author), Kern, Bastian (author), Dahlmann, K. (author), Frömming, C. (author)
A climate-optimized routing is expected as an operational measure to reduce the climate impact of aviation, whereas this routing causes extra aircraft operating costs. This study performs some air traffic simulations of nine aircraft routing strategies which include the climate-optimized routing, and examines characteristics of those routings. A...
abstract 2020
document
Dahlmann, K. (author), Matthes, Sigrun (author), Yamashita, H. (author), Unterstrasser, S. (author), Grewe, V. (author), Marks, Tobias (author)
An operational measure to aim for mitigation of aviation climate impact that is inspired by migrant birds is to fly in aerodynamic formation. This operational measure adapted to human aircraft would eventually save fuel and is, therefore, expected to reduce the climate impact of aviation. As this method changes beside the total emission also the...
abstract 2020
document
Frömming, C. (author), Grewe, V. (author), Brinkop, S. (author), Haslerud, Amund S. (author), Rosanka, S. (author), Matthes, Sigrun (author), van Manen, J. (author)
Emissions of aviation include CO2, H2O, NOx and particles. While CO2 has a long atmospheric residence time and is uniformly distributed in the atmosphere, non-CO2 gases, particles and their products have short atmospheric residence times and are heterogeneously distributed. Their climate effects depend on chemical and meteorological background...
abstract 2020
Searched for: +
(1 - 7 of 7)