Searched for: +
(1 - 3 of 3)
document
Oud, B. (author), Guadalupe-Medina, V. (author), Nijkamp, J.F. (author), De Ridder, D. (author), Pronk, J.T. (author), Van Maris, A.J.A. (author), Daran, J.G. (author)
Laboratory evolution of the yeast Saccharomyces cerevisiae in bioreactor batch cultures yielded variants that grow as multicellular, fast-sedimenting clusters. Knowledge of the molecular basis of this phenomenon may contribute to the understanding of natural evolution of multicellularity and to manipulating cell sedimentation in laboratory and...
journal article 2013
document
Guadalupe-Medina, V. (author), Metz, B. (author), Oud, B. (author), Van der Graaf, C.M. (author), Pronk, J.T. (author), Van Maris, A.J.A. (author)
Glycerol production by Saccharomyces cerevisiae, which is required for redox-cofactor balancing in anaerobic cultures, causes yield reduction in industrial bioethanol production. Recently, glycerol formation in anaerobic S.?cerevisiae cultures was eliminated by expressing Escherichia coli (acetylating) acetaldehyde dehydrogenase (encoded by mhpF...
journal article 2013
document
Guadalupe-Medina, V. (author), Wisselink, H.W. (author), Luttik, M.A.H. (author), De Hulster, E. (author), Daran, J.M. (author), Pronk, J.T. (author), Van Maris, A.J.A. (author)
Background Redox-cofactor balancing constrains product yields in anaerobic fermentation processes. This challenge is exemplified by the formation of glycerol as major by-product in yeast-based bioethanol production, which is a direct consequence of the need to reoxidize excess NADH and causes a loss of conversion efficiency. Enabling the use of...
journal article 2013