Searched for: +
(1 - 8 of 8)
document
Meles, G.A. (author), Reinicke, Christian (author), Dukalski, M (author), Wapenaar, C.P.A. (author)
Marchenko redatuming retrieves Green’s functions inside an unknown medium, by solving a set of coupled Marchenko equations, which are derived from an under-determined system of equation and two temporal truncations. To constrain the problem, two assumptions are made, which hold reasonably well for acoustic, but not for elastodynamic waves. First...
conference paper 2022
document
van der Neut, J.R. (author), Brackenhoff, J. (author), Meles, Giovanni Angelo (author), Slob, E.C. (author), Wapenaar, C.P.A. (author)
Green’s functions in an unknown elastic layered medium can be retrieved from single-sided reflection data by solving a Marchenko equation. This methodology requires a priori knowledge of all forward-scattered (non-converted and converted) waveforms. Moreover, the medium should satisfy stringent monotonicity conditions, which are often not met in...
conference paper 2022
document
van der Neut, J.R. (author), Brackenhoff, J. (author), Meles, G. (author), Zhang, L. (author), Slob, E.C. (author), Wapenaar, C.P.A. (author)
Green’s functions in an unknown medium can be retrieved from single-sided reflection data by solving a multidimensional Marchenko equation. This methodology requires knowledge of the direct wavefield throughout the medium, which should include forward-scattered waveforms. In practice, the direct field is often computed in a smooth background...
conference paper 2021
document
Shoja, Aydin (author), Meles, G.A. (author), Wapenaar, C.P.A. (author)
The Hessian matrix plays an important role in correct interpretation of the multiple scattered wave fields inside the FWI frame work. Due to the high computational costs, the computation of the Hessian matrix is not feasible. Consequently, FWI produces overburden related artifacts inside the target zone model, due to the lack of the exact...
conference paper 2020
document
Meles, G.A. (author), Zhang, L. (author), Thorbecke, J.W. (author), Wapenaar, C.P.A. (author), Slob, E.C. (author)
Seismic images provided by reverse time migration can be contaminated by artefacts associated with the migration of multiples.<br/><br/>Multiples can corrupt seismic images, producing both false positives, i.e. by focusing energy at unphysical interfaces, and false negatives, i.e. by destructively interfering with primaries. Multiple-related...
conference paper 2020
document
Meles, G.A. (author), van der Neut, J.R. (author), van Dongen, K.W.A. (author), Wapenaar, C.P.A. (author)
Wavefield focusing can be achieved by Time-Reversal Mirrors, which involve in- and output signals that are infinite in time and waves propagating through the entire medium. Here, an alternative solution for wavefield focusing is presented. This solution is based on a new integral representation where in- and output signals are finite in time,...
conference paper 2019
document
Reinicke Urruticoechea, C. (author), Meles, G.A. (author), Wapenaar, C.P.A. (author)
The Marchenko method is capable to create virtual sources inside a medium that is only accessible from an openboundary. The resulting virtual data can be used to retrieve images free of artefacts caused by internal multiples. Conventionally, the Marchenko method retrieves a so-called focusing wavefield that focuses the data from the recording...
conference paper 2018
document
Dokter, E. (author), Meles, G.A. (author), Curtis, A (author), Wapenaar, C.P.A. (author)
A number of seismic processing methods, including velocity analysis (Sheriff and Geldart, 1999), make the assumption that recorded waves are primaries - that they have scattered only once (the Born approximation). Multiples then represent a source of coherent noise and must be suppressed to avoid artefacts. There are different approaches to...
conference paper 2017
Searched for: +
(1 - 8 of 8)