Searched for: +
(1 - 20 of 61)

Pages

document
du Fossé, I. (author)
Due to their size-dependent properties, high photoluminescence quantum yield and relatively cheap solution-based processing, colloidal quantum dots (QDs) are of great interest for application in optoelectronic devices. However, the efficiency of these devices is often limited by the presence of trap states: localized electronic states that lead...
doctoral thesis 2023
document
Llusar, Jordi (author), du Fossé, I. (author), Hens, Zeger (author), Houtepen, A.J. (author), Infante, Ivan (author)
Although density functional theory (DFT) calculations have been crucial in our understanding of colloidal quantum dots (QDs), simulations are commonly carried out on QD models that are significantly smaller than those generally found experimentally. While smaller models allow for efficient study of local surface configurations, increasing the...
journal article 2023
document
Mangnus, Mark J.J. (author), de Wit, Jur W. (author), Vonk, Sander J.W. (author), Geuchies, J.J. (author), Albrecht, Wiebke (author), Bals, Sara (author), Houtepen, A.J. (author), Rabouw, Freddy T. (author)
In recent years, quantum dots (QDs) have emerged as bright, color-tunable light sources for various applications such as light-emitting devices, lasing, and bioimaging. One important next step to advance their applicability is to reduce particle-to-particle variations of the emission properties as well as fluctuations of a single QD’s...
journal article 2023
document
Ungerer, J. H. (author), Chevalier Kwon, P. (author), Patlatiuk, T. (author), Ridderbos, J. (author), Kononov, A. (author), Sarmah, D. (author), Bakkers, E.P.A.M. (author), Zumbühl, D. (author), Schönenberger, C. (author)
Spin qubits in germanium are a promising contender for scalable quantum computers. Reading out of the spin and charge configuration of quantum dots formed in Ge/Si core/shell nanowires is typically performed by measuring the current through the nanowire. Here, we demonstrate a more versatile approach on investigating the charge configuration...
journal article 2023
document
Van Rijs, Samantha (author), Ercan, İlke (author), Vladimirescu, A. (author), Sebastiano, F. (author)
Quantum computers process information stored in quantum bits (qubits), which must be controlled and read out by a traditional electronic interface. Co-designing and cooptimizing such a quantum-classical complex system requires efficient simulators to emulate the qubits and their interaction with classical electronics. For spin-qubit readout,...
conference paper 2023
document
Almeida, Guilherme (author), van der Poll, L.M. (author), Evers, W.H. (author), Szoboszlai, Emma (author), Vonk, Sander J.W. (author), Rabouw, Freddy T. (author), Houtepen, A.J. (author)
Indium phosphide colloidal quantum dots (CQDs) are the main alternative for toxic and restricted Cd based CQDs for lighting and display applications. Here we systematically report on the size-dependent optical absorption, ensemble, and single particle photoluminescence (PL) and biexciton lifetimes of core-only InP CQDs. This systematic study...
journal article 2023
document
Stam, M. (author), du Fossé, I. (author), Infante, Ivan (author), Houtepen, A.J. (author)
Quantum dots (QDs) are known for their size-dependent optical properties, narrow emission bands, and high photoluminescence quantum yield (PLQY), which make them interesting candidates for optoelectronic applications. In particular, InP QDs are receiving a lot of attention since they are less toxic than other QD materials and are hence...
journal article 2023
document
Paquelet Wuetz, B. (author)
Spin qubits in silicon have emerged as a promising candidate for a scalable quantum computer due to their small footprint, long coherence times, and their compatibility with advanced semiconductor manufacturing. However, all known spin qubit material hosts come with specific challenges, that limit the performance of quantum information...
doctoral thesis 2022
document
Lawrie, W.I.L. (author)
Quantum computers based on semiconductor quantum dots are proving promising contenders for large scale quantum information processing. In particular, group IV based semiconductor hosts containing an abundance of nuclear spin-zero isotopes have made considerable headway into fulfilling the requirements of a universal quantum computer. Silicon (Si...
doctoral thesis 2022
document
Xue, X. (author)
Benchmarking the performance of a quantum computer is of key importance in identifying and reducing the error sources, and therefore in achieving fault-tolerant quantum computation. In the last decade, qubits made of electron spins in silicon emerged as promising candidates for practical quantum computers. To understand their physical properties...
doctoral thesis 2022
document
Vogel, Y.B. (author), Stam, M. (author), Mulder, J.T. (author), Houtepen, A.J. (author)
We present a strategy to actively engineer long-range charge transport in colloidal quantum dot assemblies by using ligand functionalities that introduce electronic states and provide a path for carrier transfer. This is a shift away from the use of inactive spacers to modulate charge transport through the lowering of the tunneling barrier...
journal article 2022
document
van Diepen, C.J. (author)
More is more applies in particular to systems with interacting parts. These interactions enable the emergence of collective behaviour. Examples can be found among the behaviour of animals, such as the V-shaped formation of migrating geese and the flight of a flock of starlings. More examples are found among the electromagnetic properties of...
doctoral thesis 2021
document
XU, Y. (author)
With continuous breakthroughs in quantum science and technology in recent years, the development of quantum computers is moving from pure scientific research to engineering realization. Meanwhile, the underlying physical structures also develop from the initial single qubit to multiple qubits or medium-scale qubit registers. Since qubits are...
doctoral thesis 2021
document
Eenink, H.G.J. (author)
The understanding of quantum mechanics enabled the development of technology such as transistors and has been the foundation of today’s information age. Actively using quantum mechanics to build quantum technology may cause a second revolution in handling information. However, to execute meaningful algorithms, largescale quantum computers have...
doctoral thesis 2021
document
Hendrickx, N.W. (author)
Spin quantum bits (qubits) defined in semiconductor quantum dots have emerged as a promising platform for quantum information processing. Various semiconductor materials have been studied as a host for the spin qubit. Over the last decade, research focussed on the group‐IV semiconductor silicon, owing to its compatibility with semiconductor...
doctoral thesis 2021
document
Zheng, G. (author)
This dissertation describes a set of experiments with the goal of creating a super-conductor-semiconductor hybrid circuit quantum electrodynamics architecture with single electron spins. Single spins in silicon quantum dots have emerged as attractive qubits for quantum computation. However, how to scale up spin qubit systems remains an open...
doctoral thesis 2021
document
Lodari, M. (author), Hendrickx, N.W. (author), Lawrie, W.I.L. (author), Hsiao, T. (author), Vandersypen, L.M.K. (author), Sammak, A. (author), Veldhorst, M. (author), Scappucci, G. (author)
We engineer planar Ge/SiGe heterostructures for low disorder and quiet hole quantum dot operation by positioning the strained Ge channel 55 nm below the semiconductor/dielectric interface. In heterostructure field effect transistors, we measure a percolation density for two-dimensional hole transport of 2.1 × 10 10 cm−2 , indicative of a very...
journal article 2021
document
Vonk, Sander J.W. (author), Heemskerk, Bart A.J. (author), Keitel, Robert C. (author), Hinterding, Stijn O.M. (author), Geuchies, J.J. (author), Houtepen, A.J. (author), Rabouw, Freddy T. (author)
Broadening of multiexciton emission from colloidal quantum dots (QDs) at room temperature is important for their use in high-power applications, but an in-depth characterization has not been possible until now. We present and apply a novel spectroscopic method to quantify the biexciton line width and biexciton binding energy of single CdSe...
journal article 2021
document
Xia, Fei (author), Gevers, Monique (author), Fognini, Andreas (author), Mok, Aaron T. (author), Li, Bo (author), Akbari, Najva (author), Esmaeil Zadeh, I.Z. (author), Qin-Dregely, Y. (author), Xu, Chris (author)
Optical microscopy is a valuable tool for in vivo monitoring of biological structures and functions because of its noninvasiveness. However, imaging deep into biological tissues is challenging due to the scattering and absorption of light. Previous research has shown that the two optimal wavelength windows for high-resolution deep mouse brain...
journal article 2021
document
Gudjónsdóttir, S. (author), Houtepen, A.J. (author)
Arguably the most controllable way to control the charge density in various semiconductors, is by electrochemical doping. However, electrochemically injected charges usually disappear within minutes to hours, which is why this technique is not yet used to make semiconductor devices. In this manuscript, electrochemical doping of different...
journal article 2020
Searched for: +
(1 - 20 of 61)

Pages