Searched for: +
(81 - 100 of 187)

Pages

document
Honig, Floris (author), Vermeulen, Steven (author), Zadpoor, A.A. (author), de Boer, Jan (author), Fratila-Apachitei, E.L. (author)
The ability to control the interactions between functional biomaterials and biological systems is of great importance for tissue engineering and regenerative medicine. However, the underlying mechanisms defining the interplay between biomaterial properties and the human body are complex. Therefore, a key challenge is to design biomaterials that...
review 2020
document
Yu, K. (author), Balasubramanian, S. (author), Pahlavani, H. (author), Mirzaali, Mohammad J. (author), Zadpoor, A.A. (author), Aubin-Tam, M.E. (author)
Natural materials, such as nacre and silk, exhibit both high strength and toughness due to their hierarchical structures highly organized at the nano-, micro-, and macroscales. Bacterial cellulose (BC) presents a hierarchical fibril structure at the nanoscale. At the microscale, however, BC nanofibers are distributed randomly. Here, BC self...
journal article 2020
document
de Witte, Tinke Marie (author), Wagner, Angela M. (author), Fratila-Apachitei, E.L. (author), Zadpoor, A.A. (author), Peppas, Nicholas A. (author)
Bone tissue engineering strategies have been developed to address the limitations of the current gold standard treatment options for bone-related disorders. These systems consist of an engineered scaffold that mimics the extracellular matrix and provides an architecture to guide the natural bone regeneration process, and incorporated growth...
journal article 2020
document
Li, Y. (author), Jahr, H. (author), Zhou, J. (author), Zadpoor, A.A. (author)
Partially due to the unavailability of ideal bone substitutes, the treatment of large bony defects remains one of the most important challenges of orthopedic surgery. Additively manufactured (AM) biodegradable porous metals that have emerged since 2018 provide unprecedented opportunities for fulfilling the requirements of an ideal bone...
review 2020
document
Mirzaali, Mohammad J. (author), Cruz Saldivar, M. (author), Herranz de la Nava, Alba (author), Gunashekar, Deepthishre (author), Nouri Goushki, M. (author), Doubrovski, E.L. (author), Zadpoor, A.A. (author)
Hard biological tissues (e.g., nacre and bone) have evolved for millions of years, enabling them to overcome the conflict between different mechanical properties. The key to their success lies in the combination of limited material ingredients (i.e., hard and soft constituents) and mechanistic ingredients (e.g., functional gradients and building...
journal article 2020
document
Kolken, H.M.A. (author), Lietaert, K. (author), van der Sloten, T. (author), Pouran, B. (author), Meynen, A. (author), Van Loock, G. (author), Weinans, Harrie (author), Scheys, L. (author), Zadpoor, A.A. (author)
The innovative design of orthopedic implants could play an important role in the development of life-lasting implants, by improving both primary and secondary implant fixations. The concept of meta-biomaterials aims to achieve a unique combination of mechanical, mass transport, and biological properties through optimized topological design of...
journal article 2020
document
Modaresifar, K. (author), Kunkels, Lorenzo (author), Ganjian, M. (author), Tümer, N. (author), Hagen, C.W. (author), Otten, L.G. (author), Hagedoorn, P.L. (author), Angeloni, L. (author), Ghatkesar, M.K. (author), Fratila-Apachitei, E.L. (author), Zadpoor, A.A. (author)
Recent progress in nano-/micro-fabrication techniques has paved the way for the emergence of synthetic bactericidal patterned surfaces that are capable of killing the bacteria via mechanical mechanisms. Different design parameters are known to affect the bactericidal activity of nanopatterns. Evaluating the effects of each parameter, isolated...
journal article 2020
document
Mirzaali, Mohammad J. (author), Herranz de la Nava, A. (author), Gunashekar, D. (author), Nouri Goushki, M. (author), Veeger, R. P.E. (author), Grossman, Q. (author), Angeloni, L. (author), Ghatkesar, M.K. (author), Fratila-Apachitei, E.L. (author), Ruffoni, D. (author), Doubrovski, E.L. (author), Zadpoor, A.A. (author)
Functional gradients are material transitions that are found in nature and are known to result in materials with superior properties and multiple functionalities. The emerging multi-material 3D printing (=additive manufacturing, AM) techniques provide a powerful tool for the design and fabrication of bioinspired functionally graded materials ...
journal article 2020
document
van Hengel, I.A.J. (author), Gelderman, F. S.A. (author), Athanasiadis, S. (author), Minneboo, M.B. (author), Weinans, Harrie (author), Fluit, A. C. (author), van der Eerden, B.C.J. (author), Fratila-Apachitei, E.L. (author), Apachitei, I. (author), Zadpoor, A.A. (author)
The holy grail of orthopedic implant design is to ward off both aseptic and septic loosening for long enough that the implant outlives the patient. Questing this holy grail is feasible only if orthopedic biomaterials possess a long list of functionalities that enable them to discharge the onerous task of permanently replacing the native bone...
journal article 2020
document
De Witte, Tinke Marie (author), Wagner, Angela M. (author), Fratila-Apachitei, E.L. (author), Zadpoor, A.A. (author), Peppas, Nicholas A. (author)
To guide the natural bone regeneration process, bone tissue engineering strategies rely on the development of a scaffold architecture that mimics the extracellular matrix and incorporates important extracellular signaling molecules, which promote fracture healing and bone formation pathways. Incorporation of growth factors into particles...
journal article 2020
document
Putra, N.E. (author), Mirzaali, Mohammad J. (author), Apachitei, I. (author), Zhou, J. (author), Zadpoor, A.A. (author)
The growing interest in multi-functional metallic biomaterials for bone substitutes challenges the current additive manufacturing (AM, =3D printing) technologies. It is foreseeable that advances in multi-material AM for metallic biomaterials will not only allow for complex geometrical designs, but also improve their multi-functionalities by...
review 2020
document
Razzi, F. (author), Fratila-Apachitei, E.L. (author), Fahy, N. (author), Bastiaansen-Jenniskens, Yvonne M. (author), Apachitei, I. (author), Farrell, E. (author), Zadpoor, A.A. (author)
Additive manufacturing (AM) techniques have provided many opportunities for the rational design of porous metallic biomaterials with complex and precisely controlled topologies that give rise to unprecedented combinations of mechanical, physical, and biological properties. These favorable properties can be enhanced by surface...
journal article 2020
document
van Hengel, I.A.J. (author), Tierolf, M. W.A.M. (author), Valerio, V. P.M. (author), Minneboo, M.B. (author), Fluit, A. C. (author), Fratila-Apachitei, E.L. (author), Apachitei, I. (author), Zadpoor, A.A. (author)
Effective preventive measures against implant-associated infection (IAI) are desperately needed. Therefore, the development of self-defending implants with intrinsic antibacterial properties has gained significant momentum. Biomaterials biofunctionalized with silver (Ag) have resulted in effective antibacterial biomaterials, yet regularly...
journal article 2020
document
Bobbert, F.S.L. (author), Janbaz, S. (author), van Manen, T. (author), Li, Y. (author), Zadpoor, A.A. (author)
Deployable meta-implants aim to minimize the invasiveness of orthopaedic surgeries by allowing for changes in their shape and size that are triggered by an external stimulus. Multi-stability enables deployable implants to transform their shape from some compact retracted state to the deployed state where they take their full sizes and are...
journal article 2020
document
van Hengel, I.A.J. (author), Putra, N.E. (author), Tierolf, M. W.A.M. (author), Minneboo, M.B. (author), Fluit, A. C. (author), Fratila-Apachitei, E.L. (author), Apachitei, I. (author), Zadpoor, A.A. (author)
Antibiotic-resistant bacteria are frequently involved in implant-associated infections (IAIs), making the treatment of these infections even more challenging. Therefore, multifunctional implant surfaces that simultaneously possess antibacterial activity and induce osseointegration are highly desired in order to prevent IAIs. The incorporation...
journal article 2020
document
Janbaz, S. (author), Narooei, K. (author), van Manen, T. (author), Zadpoor, A.A. (author)
Mechanical metamaterials are usually designed to exhibit novel properties and functionalities that are rare or even unprecedented. What is common among most previous designs is the quasi-static nature of their mechanical behavior. Here, we introduce a previously unidentified class of strain rate-dependent mechanical metamaterials. The...
journal article 2020
document
Karami, K. (author), Blok, A. (author), Weber, L.R.M. (author), Ahmadi, S.M. (author), Petrov, R.H. (author), Nikolic, Ksenija (author), Borisov, E.V. (author), Leeflang, M.A. (author), Ayas, C. (author), Zadpoor, A.A. (author), Mehdipour, M. (author), Reinton, T.E. (author), Popovich, V. (author)
Additive manufacturing technologies in general and laser powder bed fusion (L-PBF) in particular have been on the rise in different applications, including biomedical implants. The effects of the various L-PBF process parameters on the microstructure and properties of Ti6Al4V lattice structures have been studied before. However, the...
journal article 2020
document
Mirzaali, Mohammad J. (author), Pahlavani, H. (author), Yarali, E. (author), Zadpoor, A.A. (author)
Non-affine deformations enable mechanical metamaterials to achieve their unusual properties while imposing implications for their structural integrity. The presence of multiple phases with different mechanical properties results in additional non-affinity of the deformations, a phenomenon that has never been studied before in the area of...
journal article 2020
document
Li, Y. (author), Pavanram, P. (author), Zhou, J. (author), Lietaert, K. (author), Bobbert, F.S.L. (author), Kubo, Yusuke (author), Leeflang, M.A. (author), Jahr, H. (author), Zadpoor, A.A. (author)
Topological design provides additively manufactured (AM) biodegradable porous metallic biomaterials with a unique opportunity to adjust their biodegradation behavior and mechanical properties, thereby satisfying the requirements for ideal bone substitutes. However, no information is available yet concerning the effect of topological design on...
journal article 2020
document
Koolen, Marianne (author), Amin Yavari, S. (author), Lietaert, Karel (author), Wauthle, Ruben (author), Zadpoor, A.A. (author), Weinans, Harrie (author)
Additively manufactured (AM) porous metallic biomaterials, in general, and AM porous titanium, in particular, have recently emerged as promising candidates for bone substitution. The porous design of such materials allows for mimicking the elastic mechanical properties of native bone tissue and showed to be effective in improving bone...
journal article 2020
Searched for: +
(81 - 100 of 187)

Pages