Searched for: %2520
(1 - 8 of 8)
document
Wang, Y. (author), Zhang, Z. (author), Vuik, Cornelis (author), Hajibeygi, H. (author)
An efficient compositional framework is developed for simulation of CO <sub>2</sub> storage in saline aquifers during a full-cycle injection, migration and post-migration processes. Essential trapping mechanisms, including structural, dissolution, and residual trapping, which operate at different time scales, are accurately captured in the...
journal article 2023
document
Wang, Y. (author), Vuik, Cornelis (author), Hajibeygi, H. (author)
CO2 injection into deep saline aquifers has shown to be a feasible option, as for their large storage capacity under safe operational conditions. Previous studies have revealed that CO2 can be trapped in the subsurface by several mechanisms. Despite the major advances in studying these trapping mechanisms, their dynamic interactions in different...
journal article 2022
document
Hosseinimehr, S.M. (author), Piguave Tomala, Janio (author), Vuik, Cornelis (author), Al Kobaisi, Mohammed (author), Hajibeygi, H. (author)
We present the projection-based embedded discrete fracture model (pEDFM) for hexahedral corner-point grid (CPG) geometries, for the simulation of hydrothermal processes in fractured porous media. Unlike the previously-developed pEDFM for structured box grids, our new development allows for the modeling of complex geometries defined with...
journal article 2022
document
Wang, Y. (author), Vuik, Cornelis (author), Hajibeygi, H. (author)
Natural or induced fractures are typically present in subsurface geological formations. Therefore, they need to be carefully studied for reliable estimation of the long-term carbon dioxide storage. Instinctively, flow-conductive fractures may undermine storage security as they increase the risk of CO2 leakage if they intersect the CO2 plume. In...
journal article 2022
document
Wang, L. (author), Wang, Y. (author), Vuik, Cornelis (author), Hajibeygi, H. (author)
The past decades have witnessed an increasing interest in numerical simulation for flow in fractured porous media. To date, most studies have focused on 2D or pseudo-3D computational models, where the impact of 3D complex structures on seepage has not been fully addressed. This work presents a method for modeling seepage in 3D heterogeneous...
journal article 2022
document
Wang, L. (author), Vuik, Cornelis (author), Hajibeygi, H. (author)
Simulation of fracture contact mechanics in deformable fractured media is of paramount important in computational mechanics. Previous studies have revealed that compressive loading may produce mode II fractures, which is quite different from mode I fractures induced by tensile loading. Furthermore, fractures can cross each other. This will...
journal article 2022
document
Hosseinimehr, S.M. (author), Vuik, Cornelis (author), Hajibeygi, H. (author)
An algebraic dynamic multilevel (ADM) method for fully-coupled simulation of flow and heat transport in heterogeneous fractured geothermal reservoirs is presented. Fractures are modeled explicitly using the projection-based embedded discrete method (pEDFM), which accurately represents fractures with generic conductivity values, from barriers to...
journal article 2020
document
Hosseinimehr, S.M. (author), Cusini, M. (author), Vuik, Cornelis (author), Hajibeygi, H. (author)
We present an algebraic dynamic multilevel method for multiphase flow in heterogeneous fractured porous media (F-ADM), where fractures are resolved at fine scale with an embedded discrete modelling approach. This fine-scale discrete system employs independent fine-scale computational grids for heterogeneous matrix and discrete fractures,...
journal article 2018
Searched for: %2520
(1 - 8 of 8)