Searched for: %2520
(1 - 5 of 5)
document
He, S. (author), Chen, Y. (author), Liang, M. (author), Yang, En-Hua (author), Schlangen, E. (author)
This study investigates the microstructural changes of cement paste due to the inclusion of polymeric microfiber at different water-to-cement (w/c) ratios. A procedure to quantify the porosity of epoxy impregnated interfacial transition zone (ITZ) is also presented. Results show that the microstructures of the ITZ beneath and above a...
journal article 2023
document
Šavija, B. (author), Zhang, H. (author), Schlangen, E. (author)
This work aims to understand deformation and fracture processes in blast furnace slag cement pastes made using CEM III/B which is commonly used in the Dutch infrastructure sector. First, based on our previous work on Portland cement pastes, a micromechanical model utilizing nanoindentation and X-ray computed tomography (CT) for input is...
journal article 2020
document
Romero Rodriguez, C. (author), França de Mendonça Filho, F. (author), Mercuri, L. (author), Gan, Y. (author), Rossi, E. (author), Anglani, G. (author), Antonaci, P. (author), Schlangen, E. (author), Šavija, B. (author)
In this study, the interface between different types of bacteria-embedded self-healing polylactic acid capsules (PLA) and cement paste is investigated. Particularly, the changes in microstructure and mechanical properties of the interface with respect to bulk cement paste were studied. First, nanoindentation was performed to obtain maps of...
journal article 2020
document
Šavija, B. (author), Zhang, H. (author), Schlangen, E. (author)
Excessive cracking can be a serious durability problem for reinforced concrete structures. In recent years, addition of microencapsulated phase change materials (PCMs) to concrete has been proposed as a possible solution to crack formation related to temperature gradients. However, the addition of PCM microcapsules to cementitious materials...
journal article 2017
document
Lv, Leyang (author), Schlangen, E. (author), Yang, Z. (author), Xing, Feng (author)
Self-healing cementitious materials containing a microencapsulated healing agent are appealing due to their great application potential in improving the serviceability and durability of concrete structures. In this study, poly(phenol-formaldehyde) (PF) microcapsules that aim to provide a self-healing function for cementitious materials were...
journal article 2016
Searched for: %2520
(1 - 5 of 5)