Searched for: %2520
(1 - 7 of 7)
document
Xue, X. (author), Patra, B (author), van Dijk, J.P.G. (author), Samkharadze, Nodar (author), Corna, A. (author), Paquelet Wuetz, B. (author), Sammak, A. (author), Scappucci, G. (author), Veldhorst, M. (author), Sebastiano, F. (author), Babaie, M. (author), Charbon-Iwasaki-Charbon, E. (author), Vandersypen, L.M.K. (author)
The most promising quantum algorithms require quantum processors that host millions of quantum bits when targeting practical applications<sup>1</sup>. A key challenge towards large-scale quantum computation is the interconnect complexity. In current solid-state qubit implementations, an important interconnect bottleneck appears between the...
journal article 2021
document
van Dijk, J.P.G. (author), Patra, B (author), Pellerano, Stefano (author), Charbon-Iwasaki-Charbon, E. (author), Sebastiano, F. (author), Babaie, M. (author)
The design of a large-scale quantum computer requires co-optimization of both the quantum bits (qubits) and their control electronics. This work presents the first systematic design of such a controller to simultaneously and accurately manipulate the states of multiple spin qubits or transmons. By employing both analytical and simulation...
journal article 2020
document
Sebastiano, F. (author), van Dijk, J.P.G. (author), Thart, P. A. (author), Patra, B (author), van Staveren, J. (author), Xue, X. (author), Almudever, Carmen G. (author), Scappucci, G. (author), Veldhorst, M. (author), Vandersypen, L.M.K. (author), Vladimirescu, A. (author), Babaie, M. (author), Charbon-Iwasaki-Charbon, E. (author)
Cryogenic CMOS (cryo-CMOS) is a viable technology for the control interface of the large-scale quantum computers able to address non-trivial problems. In this paper, we demonstrate state-of-the-art cryo-CMOS circuits and systems for such application and we discuss the challenges still to be faced on the path towards practical quantum...
conference paper 2020
document
Patra, B (author), van Dijk, J.P.G. (author), Corna, A. (author), Xue, X. (author), Samkharadze, Nodar (author), Sammak, A. (author), Scappucci, G. (author), Veldhorst, M. (author), Vandersypen, L.M.K. (author), Babaie, M. (author), Sebastiano, F. (author), Charbon-Iwasaki-Charbon, E. (author)
Quantum computers (QC), comprising qubits and a classical controller, can provide exponential speed-up in solving certain problems. Among solid-state qubits, transmons and spin-qubits are the most promising, operating « 1K. A qubit can be implemented in a physical system with two distinct energy levels representing the |0) and |1) states, e.g...
conference paper 2020
document
van Dijk, J.P.G. (author), Kawakami, E. (author), Schouten, R.N. (author), Veldhorst, M. (author), Vandersypen, L.M.K. (author), Babaie, M. (author), Charbon-Iwasaki-Charbon, E. (author), Sebastiano, F. (author)
Quantum processors rely on classical electronic controllers to manipulate and read out the state of quantum bits (qubits). As the performance of the quantum processor improves, nonidealities in the classical controller can become the performance bottleneck for the whole quantum computer. To prevent such limitation, this paper presents a...
journal article 2019
document
van Dijk, J.P.G. (author), Vladimirescu, A. (author), Babaie, M. (author), Charbon-Iwasaki-Charbon, E. (author), Sebastiano, F. (author)
A quantum computer comprises a quantum processor and the associated control electronics used to manipulate the qubits at the core of a quantum processor. CMOS circuits placed close to the quantum bits and operating at cryogenic temperatures offer the best solution for the control of millions of qubits. The performance requirements of the...
conference paper 2019
document
Patra, B (author), Incandela, R.M. (author), van Dijk, J.P.G. (author), Homulle, Harald (author), Song, Lin (author), Shahmohammadi, M. (author), Staszewski, R.B. (author), Vladimirescu, A. (author), Babaie, M. (author), Sebastiano, F. (author), Charbon-Iwasaki-Charbon, E. (author)
A fault-tolerant quantum computer with millions of quantum bits (qubits) requires massive yet very precise control electronics for the manipulation and readout of individual qubits. CMOS operating at cryogenic temperatures down to 4 K (cryo-CMOS) allows for closer system integration, thus promising a scalable solution to enable future quantum...
contribution to periodical 2018
Searched for: %2520
(1 - 7 of 7)